Daten und KI in Digifonds Projekten

DatDA: Datenbasierte Diskriminierung in der Arbeitswelt

Algorithmen gelten in der öffentlichen Wahrnehmung oft als faire, Daten-basierte Entscheider. Elisabeth Greif und Miriam Kullmann vom Digifonds-Projekt DatDa (Wirtschaftsuniversität Wien & Johannes Kepler Universität Linz) erklären, dass viele unserer Zukunftsprognosen auf Daten mit Bias basieren, also Formen von Ungleichheit und Diskriminierung fortschreiben können. 

Die Projektleiterinnen erklären: "Datenbasierte Entscheidungssysteme werden häufig als Garantie für bessere Ergebnisse angesehen, vor allem um vorurteilsgeprägte Entscheidungen zu vermeiden. Tatsächlich lässt sich durch den Einsatz automationsunterstützer Prozesse Diskriminierung jedoch nicht verhindern, algorithmische Enscheidungssysteme schreiben bestehende Ungleichheiten oft fort oder verstärken sie sogar. Ein menschenrechtsbasiertes Framework für Faire Algorithmen in der Arbeitswelt kann dabei helfen, dieses Diskriminierungsrisiko zu verringern." 

Elisabeth Greif und Miriam Kullmann arbeiten in ihrem Forschungsprojekt gerade an eben so einem Framework für Faire Algorithmen, damit Diskriminierung auch im digitalen Raum keine Chance hat und unsere Datenpolitiken so fair wie möglich werden! Denn: "Algorithmische Entscheidungssysteme können nur so gut sein, wie die Datensätze, die für das Training der Algorithmen herangezogen werden." Und mit alten Daten mit Bias werden die Ungleichheiten der Vergangenheit auch in der Zukunft reproduziert und einzementiert. Das Framework soll eine Guideline für IT-Entwickler*innen darstellen und sie dabei unterstützen, automationsunterstützte Entscheidungsprozesse so zu gestalten, dass ihr Einsatz nicht zu diskriminierenden Ergebnissen führt.

DEBIAS - Digitally Eliminating Bias in Applicant Selection

In Bewerbungsverfahren werden erwiesenermaßen jene Kandidat*innen positiver bewertet, die den Einsteller*innen selbst am ähnlichsten sind. Je größer der Unterschied, desto kritischer werden Bewerber*innen beurteilt. Das passiert ganz oft unbewusst. Aber wie kann ein für alle fairer Interview-Prozess aussehen? Genau das erforscht das Projekt DEBIAS (Centre for Informatics & Society, TU Wien): Wie können Technologien der Anonymisierung eingesetzt werden, um möglichst faire Bewerbungsgespräche zu ermöglichen? Einen persönlichen Eindruck von Kandidat*innen zu gewinnen, soll trotz Technik-Einsatz für mehr Fairness weiterhin möglich sein.

Beim Voice of Diversity Event des TU Career Center konnte das DEBIAS Tool live getestet werden: Anonymisierte Interview-Situationen und vergleichbare, strukturierte Bewertung von Kandidat*innen durch die entwickelte Anwendung brachten erste, viel versprechende Ergebnisse.

Mehr Informationen zu DEBIAS finden sich unter debias.cisvienna.com. Außerdem empfehlen wir eine spannende Info-Broschüre des TU Wien Career Centre zum #VoiceofDiversity Event 2020 und dem Kampf gegen Diskriminierung im Personal-Management und Recruiting! 

Digitaler Stereotypen-Decoder (JADE - Job-Ad Decoder)

Im Projekt JADE (Institut für Organisation und Lernen, Universität Innsbruck) werden in Stellenausschreibungen Sprachcodes identifiziert, die etwa Frauen oder Ältere entmutigen sich zu bewerben, und alternative Formulierungen angeboten. 

Das Problem: Stelleninserate enthalten häufig Formulierungen, die stereotype Vorstellungen, z.B. zu Geschlecht und Alter, transportieren. Aus wissenschaftlichen Studien ist beispielsweise bekannt, dass Inserate für leitende Positionen oder aus Branchen mit überdurchschnittlicher Vergütung besonders viele männliche Stereotype (z.B. „durchsetzungsfähig“) und mit Jugend konnotierte Sprachcodes (z.B. „dynamisch“) enthalten.

Diese Sprachcodes können für potenzielle Bewerber*innen (v.a. Frauen, ältere Arbeit-suchende) abschreckend wirken. Das verringert die Vielfalt der Pools an Bewerber*innen, die Unternehmen für die Besetzung vakanter Stellen zur Verfügung stehen. Gleichzeitig zeigen viele Studien jedoch, dass eine höhere Vielfalt in der Belegschaft in einer diversitätsfreundlichen Unternehmenskultur Unternehmen langfristig einen Vorteil bringt.

Unternehmen können eine höhere Vielfalt an Bewerber*innen erreichen, indem sie auf eine passende Formulierung von Stelleninseraten achten. Der digitale Stereotypendecoder wird entwickelt, um Unternehmen zu helfen, ihre Stelleninserate so zu gestalten, dass sich potenzielle Bewerber*innen nicht aufgrund problematischer Formulierungen vor einer Bewerbung zurückschrecken. Er tut dies, indem er stereotypen-geladene Sprachcodes identifiziert und rückmeldet sowie alternative Formulierungen vorschlägt.

Erste Demo-Versionen folgen bald! 

Kontakt

Kontakt

Kammer für Arbeiter und Angestellte für Wien

Büro für digitale Agenden
Prinz Eugenstraße 20-22
1040 Wien

Telefon: +43 1 50165-0
Mail: arbeit.digital@akwien.at 

- erreichbar mit der Linie D -