Labor Supply Shocks and the Beveridge Curve Empirical Evidence from Austria

Stefan Schiman

WIFO

November 2018

Piece #1/3: The Share of Foreign Workers

Piece #2/3: Who immigrated?

Piece #3/3: The Beveridge Curve in Austria

Research question: To which extent did (foreign) labor supply shocks since 05/2011 contribute to the outward shift of the Beveridge Curve?

Labor supply shock: definition

- a positive labor supply shock represents a decrease in disutility of work
 - either at the intensive margin (increase of hours worked per head) or
 - at the extensive margin as additional members of a representative household are added to participation

mechanism:

- job seekers ↑
 - search time \(\\uparrow\), (stock of) unemployment \(\\uparrow\)
 - recruitment time ↓, (stock of) emplyoment ↑
- matching improves, vacancies ↓
 wages ↓, labor demand ↑, vacancies/employment ↑, unemployment ↓

unique (identifying) feature:

positive comovement of employment and unemployment on impact

Empirical model

$$\begin{aligned} &\textbf{y}_t = \textbf{c} + \sum_{i=1}^6 \textbf{A}_i \textbf{y}_{t-i} + \textbf{u}_t \\ &\textbf{u}_t = \textbf{B}^{-1} \textbf{w}_t \end{aligned}$$

where
$$\mathbf{y_t} = \begin{pmatrix} une_t & emp_t & vac_t \end{pmatrix}'$$
 data

$b_{ij} \in \mathbf{B^{-1'}}$	une.	emp.	vac.
labor supply shock	+	+	
shocks of the BC*	+	_	+
shocks along the BC°	+	_	_

^{*} corr(job creation, job destruction) > 0: reallocation (structural change), matching efficiency

▶ implementation of sign restrictions

 $^{^{\}circ}$ corr(job creation, job destruction) < 0: demand, technology, bargaining power

Impulse responses, labor supply shocks

- unemployment rises for approx. one and a half year
- increased matching reduces vacancies on impact
- in the medium run, higher labor demand raises vacancies, boosts employment, and reduces (heightened) unemployment

Counterfactual Beveridge Curves

- from 05/2011 to 05/2015, 1 to 2.2 percentage points of unemployment increase from 7% to 9.7% (i.e. 37%-82%) due to labor supply shocks
- also, vacancies increase and unemployment decline since 05/2015 is to a large extent due to labor supply shocks

Counterfactual Regional Beveridge Curves

- effects large in Vienna, modest in Lower Austria, absent in Tirol
- east was more exposed to labor supply shock than the west
- the metropolitan area was more affected than the countryside

Domestic vs. Foreign labor supply shocks

$b_{ij} \in \mathbf{B^{-1'}}$	une.	emp.	f.emp.	vac.
foreign labor supply shock	+	+	+	
domestic labor supply shock	+	+	$<rac{b_{13}(b_{21}+b_{22})}{(b_{11}+b_{12})}$	
shock of the BC	+	_	_	+
shock along the BC	+	_	_	_

Domestic vs. Foreign labor supply shocks, IRFs

- foreign workers displace domestic workers, on impact
- later, domestic employment rises due to increased labor demand

Outlook

estimate growth and wage effects in an extended model on quarterly data according to the sign restrictions proposed by *Foroni - Furlanetto - Lepetit* (International Economic Review, 2018):

	gdp	prices	wages	une.	vac.
demand shock	+	+		_	
technology shock	+	_	+		
labor supply shock	+	_	_	+	
wage bargaining shock	+	_	_	_	+
matching efficiency shock	+	_	_	_	_

Thank you for your attention!

Appendix

Relation to the existing literature

the analysis

- is embedded in a search-and-matching labor market framework (Elsby et al., JEL 2015)
- draws from New Keynesian models (Foroni/Furlanetto/Lepetit, IER 2016, Galí/Smets/Wouters, NBER-MA 2012)
 - to obtain the characteristics of a labor supply shock
 - to attribute economic content to other shocks
- adds to a very recent literature on macroeconomic effects of labor migration shocks in SVARs (Furlanetto/Robstad, 2018, Norges Bank WP)

Data in levels

Data in 1st differences

Implementation of sign restrictions

$$\mathbf{w_t} = \mathbf{Bu_t},$$

such that Σ_{w} is diagonal.

Then

$$\boldsymbol{\Sigma}_{\boldsymbol{u}} = \boldsymbol{B}^{-1}\boldsymbol{\Sigma}_{\boldsymbol{w}}\boldsymbol{B}^{-1'}$$

Without loss of generality let $\pmb{\Sigma}_{\pmb{w}} = \pmb{I},$ such that $\pmb{\Sigma}_{\pmb{u}} = \pmb{B}^{-1}\pmb{B}^{-1'}.$ Then

$$\Sigma_u = PP' = PQQ'P'$$

where $P=\textit{chol}(\Sigma_u)$ and Q is orthogonal (accounts for *model uncertainty*) and chosen such that sign restrictions are satisfied on first 6 months.