Size and persistence matters Wage and employment insurance at the micro level

Martin Kerndler

TU Wien Institut für Stochastik und Wirtschaftsmathematik Forschungsgruppe Ökonomie

Vienna Graduate School of Economics

Workshop Arbeitsmarktökonomie Nov 9, 2018

Introduction ●0000		
Motivation		

- firms offer substantial insurance against wage fluctuations to incumbent workers
 - aggregate productivity shocks (Bils, 1985; Devereux, 2001; Haefke et al., 2013)
 - idiosyncratic firm-level productivity shocks (Bronars and Famullari, 2001; Guiso et al., 2005; Card et al., 2018)
- how much wage insurance workers can enjoy depends on
 - persistence of the shock (Guiso et al., 2005)
 - direction of the shock (Dickens et al., 2007)
- this paper:
 - analyze interaction between persistence and size of idiosyncratic shocks in shaping wage insurance
 - 2 extend the analysis to layoffs \rightarrow employment insurance

Introduction		
00000		

Persistence matters

- seminal study by Guiso, Pistaferri, Schivardi (JPE, 2005)
 - use time-series based methods
 - estimate wage elasticities with respect to permanent and transitory shocks to idiosyncratic firm productivity
 - full insurance against transitory shocks, but not against permanent shocks (elasticity 0.0686)
- replicated for other countries with similar conclusions (Cardoso and Portela, 2009; Gürtzgen, 2014; Kátay, 2016)
- identification: (log)wage depends linearly on (log)productivity
 - $\Rightarrow\,$ wage response to positive and negative shocks is assumed to be symmetric
 - \Rightarrow nonlinear relations cannot be estimated

Productivity 0000

Sign/direction matters

International Wage Flexibility Project (Dickens et al., JEP, 2007)

- use histogram-based approach (Dickens and Goette, 2006)
- compare observed distribution of wage changes to a hypothetical symmetric distribution
- the more right-skewed to observed distribution, the more pronounced is downwards wage rigidity
- downwards wage rigidity is universal property of employment relations in Europe and in the US
- approach uses only wage data
 - $\Rightarrow\,$ no explicit relation between wage changes and firm-specific shocks
 - $\Rightarrow\,$ no estimates of wage elasticity

Introduction 000●0		
<u> </u>		

- study the interaction between shock persistence and shock size
 - is downwards wage rigidity more pronounced for transitory than for permanent shocks?
 - does the (absolute) size of a shock matter as well?
 - is there heterogeneity w.r.t. firm and worker characteristics?
- organization

I his paper

- 1 outline estimation strategy
- 2 productivity regression
- 3 wage regressions
- 4 layoff regressions

Productivity 2000 Wages 000000000 Layoffs 000000 Conclusion 0

Estimation strategy (simplified)

- use time-series properties to differentiate temporary and permanent shocks (Guiso et al. 2005)
 - fit productivity regression at the firm level
 - \blacksquare obtain autocorrelation matrix of the residuals $\Delta \hat{\varepsilon}$
 - infer stochastic process that generates these shocks, e.g.

$$\varepsilon_{jt} = \zeta_{jt} + \tilde{v}_{jt}, \quad \zeta_{jt} = \zeta_{jt-1} + \tilde{u}_{jt}, \quad \tilde{u}_{jt}, \tilde{v}_{jt} \text{ W.N.}$$

• implies $\Delta \varepsilon = \tilde{u} + \Delta \tilde{v}$

- **2** run a Kalman filter to form predictions of \tilde{u} and $\Delta \tilde{v}$ from $\Delta \hat{\varepsilon}$
- **3** use these predictions in (first differenced) wage regression

$$\Delta \ln w_{ijt} = \Delta X'_{ijt} \delta + f(\tilde{u}_{jt}) + g(\Delta \tilde{v}_t) + \Delta \psi_{ijt}$$

Productivity •000 Wages 000000000 Layoffs 000000 Conclusion 0

Data and sample selection

- linked employer-employee data of the IAB (LIAB), longitudinal version 1993–2010
 - employer data: representative annual IAB establishment survey
 - employee data: social insurance records
 - unit of observation is an establishment
- use information from 1993–2008
- privately-owned establishments in the private, non-financial sector with at least 5 employees
- male full time employees aged 25 to 59
- individuals with censored wages (16%) excluded from wage regressions but included in layoff regressions
- wage reg.: 2531 establishments, 216709 individuals sample statistics

Introduction 00000 Productivity

Wages 000000000 Layoffs 000000 Conclusion 0

Productivity regression

• productivity of establishment j in year t is

$$\ln\left(\frac{Y_{jt}}{L_{jt}}\right) = \rho \ln\left(\frac{Y_{jt-1}}{L_{jt-1}}\right) + \alpha \ln\left(\frac{K_{jt}}{L_{jt}}\right) + Z'_{jt}\gamma + \varphi_j + \varepsilon_{jt}$$

• Y_{jt} annual sales in year t

- L_{jt} total employment at June 30 of year t
- K_{jt} capital stock constructed from investment data
- Z_{jt} year dummies, linear time trend interacted with industry and region dummies
- φ_j unobserved establishment-specific fixed effect
- estimated in first differences using GMM (regression table)
 - Diff-in-Hansen: capital-labor ratio can be treated as exogenous
 - constant returns to scale cannot be rejected adding log-employment

Productivity 0000 Wages 000000000 Layoffs 000000 Conclusion 0

Residual autocorrelation

autocorrelation matrix of the GMM residuals:

order (k)	$\mathbb{E}[\Delta \hat{\varepsilon}_{jt} \Delta \hat{\varepsilon}_{jt-k}]$	std. err.
0	0.0795^{***}	0.0038
1	-0.0344^{***}	0.0024
2	0.0018	0.0012
3	-0.0009	0.0011

standard errors bootstrapped with clustering at the establishment level, significance levels: * p<0.10, ** p<0.05, *** p<0.01

consistent with the error process

$$\varepsilon_{jt} = \zeta_{jt} + \tilde{v}_{jt}, \quad \zeta_{jt} = \zeta_{jt-1} + \tilde{u}_{jt}, \quad \tilde{u}_{jt}, \tilde{v}_{jt} \text{ W.N.}$$

 \blacksquare estimates $\hat{\sigma}_{\tilde{v}}^2=0.0344$ and $\hat{\sigma}_{\tilde{u}}^2=0.0088$ significant at 1% level

Productivity		
0000		

Kalman smoothing

first differencing yields stationary state-space model

$$\Delta \varepsilon_{jt} = \Delta \tilde{v}_{jt} + \tilde{u}_{jt} = \begin{pmatrix} 1 & -1 \end{pmatrix} z_{jt} + \tilde{u}_{jt}$$
$$z_{jt} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} z_{jt-1} + \begin{pmatrix} \tilde{v}_{jt} \\ 0 \end{pmatrix}$$

where $z_{jt} := (\tilde{v}_{jt}, \tilde{v}_{jt-1})'$

- if $\mathbb{E}\tilde{u}_{jt}^2$ and $\mathbb{E}\tilde{v}_{jt}^2$ are known, Kalman smoothing yields the best linear prediction of $\{\tilde{u}_{jt}, z_{jt}\}_{t=1}^{T_j}$ given $\{\Delta \hat{\varepsilon}_{jt}\}_{t=1}^{T_j}$ (Hamilton, 1994)
- shock variances must be estimated

$$\mathbb{E}\tilde{u}_{jt}^2 = \sigma_{\tilde{u}j}^2 = \exp(D'_j\lambda_{\tilde{u}}), \quad \mathbb{E}\tilde{v}_{jt}^2 = \sigma_{\tilde{v}j}^2 = \exp(D'_j\lambda_{\tilde{v}})$$

• baseline: D_j contains dummies for firm size (4 categories)

Linear wage response

Guiso et al. (2005) model individual wages as

$$\ln w_{ijt} = X'_{ijt}\delta + \alpha P_{jt} + \beta T_{jt} + \phi_{ij} + \psi_{ijt}$$

- w_{ijt} annual avg. wage that establishment j pays worker i in year t
- *X_{ijt}* includes *Z_{jt}*, cubic polynomials in age and tenure, dummies for industrial relations, education, white collar employment
- P_{jt} permanent productivity component (essentially ζ_{jt})
- T_{jt} transitory productivity component (essentially \tilde{v}_{jt})
- ϕ_{ij} unobserved match-specific fixed effect
- P_{jt} and T_{jt} stem from decomposition $\ln\left(\frac{Y_{jt}}{L_{jt}}\right) = D_{jt} + P_{jt} + T_{jt}$ • problem: P_{it} and T_{it} are unobserved

Productivit 0000 Wages ○●○○○○○○○ Layoffs 000000 Conclusion 0

Linear wage response (2)

first differencing:

$$\Delta \ln w_{ijt} = \Delta X'_{ijt} \delta + \alpha \Delta P_{jt} + \beta \Delta T_{jt} + \Delta \psi_{ijt} \qquad (*)$$

where
$$\Delta P_{jt} = \frac{\tilde{u}_{jt}}{1-\rho}$$
, $\Delta T_{jt} = (1-\rho L)^{-1} [\Delta \tilde{v}_{jt} - \frac{\rho}{1-\rho} \Delta \tilde{u}_{jt}]$

- use predictions of \tilde{u}_{jt} and $\Delta \tilde{v}_{jt}$ to predict ΔP_{jt} and ΔT_{jt}
- substitute these into (*) and estimate by OLS
- bootstrap standard errors since predictions are used as regressors (clustering at the establishment level)

	Wages	
	00000000	

Wage elasticities

	ML variance estimate		MM variance estimate	
	coef.	std. err.	coef.	std. err.
α	0.0625^{***}	0.0143	0.0617^{***}	0.0145
β	0.0189^{*}	0.0102	0.0192^{*}	0.0105

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

Productivit 0000 Wages 000000000 Layoffs 000000 Conclusion 0

Nonlinear wage response

generalize wage regression model

$$\Delta \ln w_{ijt} = \Delta X'_{ijt} \delta + f(\Delta P_{jt}) + g(\Delta T_{jt}) + \Delta \psi_{ijt}$$

f and g may be parametric or non-parametric functions
 to find appropriate parametric forms, first estimate semiparametrically, assuming that f and g are locally linear
 then piecewise linear functions with appropriate break points
 replace ΔP_{it} and ΔT_{it} with the predictions of the Kalman filter

Local wage elasticities

- $\hfill\blacksquare$ assume that f and g are piecewise linear on disjoint intervals I_k
- q_r refers to the rth percentile of the respective shock distribution

	permanent shock, ΔP_{jt}		transitory sho	ock, ΔT_{jt}
interval I_k	coefficient	std. err.	coefficient	std. err.
\mathbb{R}	0.0625***	0.0143	0.0189^{*}	0.0102
$(-\infty,0)$	-0.0056	0.0269	0.0462^{***}	0.0172
$[0, +\infty)$	0.1121^{***}	0.0268	-0.0067	0.0096
$[q_{10}, q_{50})$	0.1082**	0.0524	0.0821**	0.0325
$[q_{50},q_{90})$	0.1149^{**}	0.0498	0.0043	0.0220

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

	Wages	
	00000000	

Wage response to a permanent shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded)

	Wages	
	000000000	

Wage response to a transitory shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded) Productivit

Wages 000000000 Layoffs 000000 Conclusion 0

Local wage elasticities by worker type

	permanent sho	ock, ΔP_{jt}	transitory sho	ck, ΔT_{jt}
interaction $ imes$ interval I_k	coefficient	std. err.	coefficient	std. err.
blue-collar $ imes \mathbb{R}$	0.0613^{***}	0.0173	0.0244^{*}	0.0134
white-collar $ imes \mathbb{R}$	0.0651^{***}	0.0186	-0.0015	0.0088
blue-collar $ imes (q_{10}, q_{50})$	0.0920	0.0611	0.1117^{***}	0.0429
$blue-collar\times[q_{50},q_{90})$	0.1088^{**}	0.0555	-0.0059	0.0285
white-collar $ imes~(q_{10},q_{50})$	0.0453	0.0555	0.0136	0.0196
white-collar $ imes \left[q_{50}, q_{90} ight)$	0.1819^{***}	0.0526	0.0054	0.0234

employees in the manufacturing sector only; q_r refers to the rth percentile of the respective distribution; bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, *** p<0.05, **** p<0.01

Summary: wage elasticities

permanent shocks:

- downwards real wage rigidity only observed for very bad shocks
- \blacksquare wage elasticity of 0.10--0.12 in the middle of the distribution
- transitory shocks:
 - \blacksquare negative shocks lower wages, positive shocks captured by firm \Rightarrow upward rigidity
- heterogeneity with respect to worker type:
 - downwards flexibility of wages limited to blue-collar employment
 - wages of white-collar workers are downwards rigid
 - in line with previous empirical evidence, e.g. Campbell (1997), Du Caju et al. (2007)
 - might be due to motivational considerations (shirking, job search)

Productivity 0000 Wages 000000000 Layoffs •00000

Layoff regressions

- \blacksquare layoff = transition from employment to non-employment s.t.
 - 1 non-employment spell lasts for at least 60 days
 - 2 the next employment spell is not with the same employer
- $lay_{ijt} = 1$ if worker i is laid off by establishment j in year t
- \blacksquare mean annual layoff probability is 6.87%
- linear probability model in first differences

$$\Delta lay_{ijt} = \Delta X'_{ijt}\delta + f(\Delta P_{jt}) + g(\Delta T_{jt}) + \Delta \psi_{ijt}$$

Semi-elasticity of the layoff rate

	permanent shock, ΔP_{jt}		transitory sho	ock, ΔT_{jt}
interval I_k	coefficient	std. err.	coefficient	std. err.
\mathbb{R}	-0.0262	0.0215	0.0018	0.0094
$(-\infty,0)$	-0.0953^{**}	0.0463	0.0044	0.0232
$[0, +\infty)$	0.0257	0.0291	-0.0001	0.0175

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

elasticity w.r.t. negative permanent shock:

$$\frac{\partial lay_{ijt}}{\partial P_{ijt}} \frac{1}{lay_{ijt}} = -\frac{0.0953}{0.0687} = -1.39$$

	Layoffs	
	00000	

Layoff response to a permanent shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded)

	Layoffs	
	000000	

Layoff response to a transitory shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded)

Semi-elasticity of the layoff rate by worker type

	permanent shock, ΔP_{jt}		transitory shock, ΔT_j	
interaction $ imes$ interval I_k	coefficient	std. err.	coefficient	std. err.
blue-collar $ imes \mathbb{R}$	-0.0251	0.0203	-0.0026	0.0103
white-collar $ imes \mathbb{R}$	0.0215	0.0231	-0.0007	0.0090
blue-collar \times $(-\infty, 0)$	-0.0996^{***}	0.0381	0.0137	0.0250
blue-collar $ imes [0,+\infty)$	0.0259	0.0314	-0.0179	0.0165
white-collar $ imes$ $(-\infty,0)$	-0.0052	0.0547	0.0178	0.0262
white-collar $ imes \left[0,+\infty ight)$	0.0435	0.0415	-0.0217	0.0181

employees in the manufacturing sector only; q_r refers to the rth percentile of the respective distribution; bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, *** p<0.05, **** p<0.01

Productivit<u>:</u> 2000 Wages 000000000 Layoffs 000000 Conclusion 0

Summary: layoff elasticities

- layoff probability only reacts to negative permanent shocks
- no reaction to negative transitory shocks (suggests that Kalman filter does a reasonably good job)
- heterogeneity by worker type:
 - increase in layoffs limited to blue-collar employment
 - white-collar employment perfectly insured against negative shocks
 - might be due to higher replacement costs

		Conclusion •
Conclusion		

- how do productivity shocks at the firm level affect individual wages and employment?
- focus on interaction between shock persistence and shock size
- on average little evidence for downwards wage rigidity
 - permanent shocks have largely symmetric effect on wages
 - transitory shocks lead to upwards wage rigidity
- substantial heterogeneity at the worker level
 - wage cuts and employment loss after negative shocks concentrated on blue-collar workers
 - white-collar workers enjoy full insurance against negative shocks
 - hints at agency and turnover considerations

Appendix

Sample statistics

	productivity reg.		wage reg	gressions	layoff regressions	
	(establis	hment IvI)	(worke	r level)	(worker level)	
	mean	s.d.	mean	s.d.	mean	s.d.
sales per worker*	1.811	6.892	2.670	4.165	2.733	5.099
employment	181.3	772.1	2758.7	5477.5	3288.1	5477.5
capital-labor ratio*	0.947	5.913	1.409	2.172	1.426	2.182
1–9 employees	0.216		0.006		0.005	
10–99 employees	0.406		0.052		0.050	
100–199 employees	0.222		0.132		0.127	
200+ employees	0.156		0.810		0.818	
manufacturing	0.477		0.840		0.831	
construction	0.143		0.049		0.047	
sales	0.160		0.041		0.039	
services	0.220		0.070		0.083	
wage			107.23	27.28	116.29	39.09
tenure			12.234	7.393	11.578	7.823
age			41.459	8.702	41.817	8.762
white-collar			0.180		0.311	
establishments	20	697	25	31	26	20
individuals			216	709	300	667

Appendix 000000000

Productivity regression

	coefficient	std. err.
$\ln\left(\frac{Y_{jt-1}}{L_{jt-1}}\right)$	0.2101^{***}	0.0376
$\ln\left(\frac{K_{jt}}{L_{jt}}\right)$	0.3173^{***}	0.0285
	χ^2 -statistic	p-value
year dummies	95.72^{***}	0.000
industry dummies	39.83^{***}	0.000
regional dummies	10.54	0.837
	statistic	p-value
AR(2) test	1.32	0.186
AR(3) test	-0.83	0.407
AR(4) test	1.11	0.267
Hansen J test	39.23	0.415
establishments (observations)	2697 (17	7407)

two-step difference GMM, corrected standard errors clustered at the establishment level, significance levels: * p<0.10, ** p<0.05, *** p<0.01

Productivity regression – robustness

	(a) static FE model		(b) dynamic	FE model
	coefficient	std. err.	coefficient	std. err.
$\frac{\ln\left(\frac{Y_{jt-1}}{L_{jt-1}}\right)}{\ln\left(\frac{Y_{jt-1}}{L_{jt-1}}\right)}$			0.2503***	0.0378
$\ln\left(\frac{K_{jt}}{L_{jt}}\right)$	0.3205^{***}	0.0289	0.3021^{***}	0.0233
$\ln L_{jt}$	0.0234	0.0380	-0.0206	0.0318
	statistic	p-value	statistic	p-value
AR(2) test	-2.77	0.006	1.81	0.070
AR(3) test	-1.55	0.120	-0.69	0.493
AR(4) test	0.72	0.471	1.10	0.270
Hansen J test	44.70	0.211	80.66	0.252

two-step diff. GMM accounting for endogeneity of $\Delta \ln L_{jt}$, corrected standard errors clustered at the establishment level, significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01

Appendix 000000000

Weak instruments

unweighted: \$\$\phi = 0.79\$, \$\$R_{\alpha}^2 = 0.051\$, \$\$R_{\beta}^2 = 0.129\$
weighted: \$\$\phi = 0.29\$, \$\$R_{\alpha}^2 = 0.013\$, \$\$R_{\beta}^2 = 0.191\$

Estimated standard deviations $\hat{\sigma}_{\tilde{u}i}$ and $\hat{\sigma}_{\tilde{v}i}$

ML estimates

MM estimates

□ permanent shock □ transitory shock

□ permanent shock □ transitory shock

error bars indicate bootstrapped standard errors clustered at the establishment level

Wage elasticities – robustness

different ML variance estimates

homoscedastic			heteroscedastic:		
nomoscedastic			establish. size + industry		
	coefficient	std. err.	coefficient	std. err.	
α	0.0701^{***}	0.0162	0.0626^{***}	0.0170	
β	0.0201^{**}	0.0091	0.0192^{*}	0.0101	

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p < 0.10, *** p < 0.05, *** p < 0.01

▲ back

Wage elasticities – heterogeneity by industry

	permanent shock, ΔP_{jt}		transitory sho	ock, ΔT_{jt}
	coefficient	std. err.	coefficient	std. err.
manufacturing	0.0615^{***}	0.0162	0.0204*	0.0121
construction	0.0950^{***}	0.0313	0.0113	0.0136
sales	0.0599^{**}	0.0236	0.0015	0.0116
services	0.0228	0.0344	0.0259	0.0246
total	0.0625^{***}	0.0143	0.0189^{*}	0.0102

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, **** p<0.01

◀ back

Wage elasticities - heterogeneity by establishment size

	permanent sho	ock, ΔP_{jt}	transitory shock, ΔT_{jt}	
size category	coefficient	std. err.	coefficient	std. err.
1–9 employees	0.0545	0.0404	0.0069	0.0091
10–99 employees	0.0681^{***}	0.0166	0.0148^{***}	0.0051
100–199 employees	0.0593^{***}	0.0141	0.0110^{***}	0.0078
200+ employees	0.0588^{***}	0.0166	0.0231	0.0130
total	0.0625^{***}	0.0143	0.0189^{*}	0.0102

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, *** p<0.05, **** p<0.01

Wage elasticities - heterogeneity by industrial relations

	permanent shock, ΔP_{jt}		transitory shock, ΔT_{jt}		
	coefficient	std. err.	coefficient	std. err.	
ΔX_{jt}	0.0708^{*}	0.0396	0.0179^{**}	0.0091	
$\Delta X_{jt} imes CBA$ industry	-0.0142	0.0371	0.0035	0.0184	
$\Delta X_{jt} \times CBA$ firm	-0.0936	0.0821	0.0073	0.0243	
$\Delta X_{jt} \times WC$	0.0104	0.0371	-0.0004	0.0200	

establishments in the manufacturing sector only; bootstrapped standard clustered at the establishment level, significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01

Wage elasticities - heterogeneity by worker type

	permanent sho	ock, ΔP_{jt}	transitory sho	ck, ΔT_{jt}
interact. $ imes$ interval	coefficient	std. err.	coefficient	std. err.
$Blue\times\mathbb{R}$	0.0613^{***}	0.0173	0.0244^{*}	0.0134
White $ imes \mathbb{R}$	0.0651^{***}	0.0186	-0.0015	0.0088
$Blue \times (-\infty, 0)$	-0.0185	0.0339	0.0631^{***}	0.0239
$Blue\times[0,+\infty)$	0.1131^{***}	0.0334	-0.0149	0.0117
White $ imes$ $(-\infty,0)$	0.0027	0.0262	0.0115	0.0133
White $ imes \left[0,+\infty ight)$	0.1150^{***}	0.0259	-0.0141	0.0123

manufacturing sector only; bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01

▲ back