THE HIDDEN COSTS OF MASS LAYOFFS

Do workers react with absenteeism when coworkers are fired?

Ahammer, A., Grübl, D., Lapinski M. & Winter-Ebmer, R. 09.November 2018 Workshop Arbeitsmarktökonomie AK Wien

Motivation

Downsizing affects employees

- Downsizing can cause large layoffs (mass layoffs)
- impact on laid off employees

impact on survivors

Morrison & Robinson (1997), Datta et al. (2010), Goesaert et al. (2015)

survivor syndrome

- distrust and frustration
- fear of job loss
- increased workload
- symptoms revealed by survivors
 - absenteeism
 - physical and psychological health problems (correlated with absenteeism)

Survivors determine future productivity of the firm

Defining the question

Productivity of workers is not directly observed

- BUT: Absent workers cannot be productive
- Exploit absenteeism as proxy for productivity
 - number of sick leave (SL) days in one quarter
 - number of SL days including Mondays, Fridays, bridge days (possible shirking indicator)
 - doctors visits, psychiatric drug use/expenditures

mass layoff event as structural change

Research Question

Do workers react with absenteeism when co-workers are fired?

Literature

productivity after a ML

- lower effort, performance and commitment
 - Travaglione & Cross (2006), Goesaert et al. (2015), Drzensky & Heinz (2016), van Dick et al. (2016), Heinz et al. (2017)

absenteeism

- increase in sickness absence (Vahtera et al. 2004)
- increased absenteeism 36% (Travaglione & Cross 2006)
- · 2% decrease sick leaves (Osthus & Mastekaasa 2010)
- no effect on absenteeism but 25% more likely to report going sick to work(Sigursteinsdottir & Rafnsdottirr 2015)

current shortcomings

- · low external validity
- surveys (self reported) and small sample case studies
- · partial effect of anger, impact of end game effect

Contribution

exploit registry data

- overcome self-report response bias
- □ increase sample size substantially
- increase external validity

examine understudied survivors

- evaluate management decision of downsizing
- □ outline potential productivity pit falls in survived workforce
- examine implications for worker protection for survivors
- establish identification framework
 - □ minimize selection bias on firm level
 - □ use controls on firm and individual level
 - □ account for effect heterogeneity on individual characteristics

Data

- Austrian Social Security Database (ASSD) linked with Upper Austrian Health Insurance Fund data
- covers 75% of all Upper Austrians
- universe of all mass layoffs between 1996 and 2014
- drop groups of joint movers & exclude civil servants
- exclude farming, construction, mining & hospitality industry
- exclude firms with size smaller 20

Remark

Data preparation is still under development. Cautious interpretation of preliminary results!

J⊻U

Mass layoffs

Definition of a mass layoff

Firm size	laid off employees				
20 < size < 100	at least five employees				
$100 \le size \le 600$	at least five percent of employees				
600 < size	at least 30 employees				

Source: Public Employment Service Austria (AMS)

Treatment group

Treatment group restrictions

- \Box the firm suffers a ML_T in time period t(0)
- \Box but did not suffer an earlier ML within eight quarters before ML_T (clean pre-treatment period)
- \Box and did not suffer a later ML eight quarters after ML_T (time horizon to analyse outcome)
- □ it must exist throughout

Control group

Control group restrictions

- □ firm suffers a ML_C 8–12 quarters after treated firm \rightarrow ML_C in time period t(8,12)
- \Box control firm did not suffer an earlier ML within 16–20 quarters before its own ML_C
- \Box firm did not suffer another ML eight quarters after the ML_C

Survivor restrictions

☐ constrain employees to *ML_C* survivors which were already working in t(-8,8)

Econometric methodology

The aim is to avoid selection bias and ensure causality

- Regression-adjusted semiparametric difference-in-difference matching
 Heckman et al. (1997), Marcus (2014), Chabe-Ferret (2015)
 Matching (on firm level)
 - restrict control firms to firms with the "same" treatment probability as treated firms
 - apply radius matching to increase inference Huber et al. (2013, 2015)
 - Difference in Differences (DiD) (on individual level)
 - · controls for constant unobserved group effects
 - individual level decreases standard errors

Identifying assumptions

Matching

conditional independence assumption (CIA)

- · the ML probability is fully explained by observed variables
- include many variables and lags (perfect and long data)
- · use future treated firms as controls

□ common support assumption (CSA)

- apply truncation and radius matching Imbens (2004), Huber et al. (2013, 2015)
- · internal validity increases

DiD

- □ parallel trend assumption
- □ mode of reporting sick leaves did not change over time

Matching method

- Nearest neighbor (NN) propensity score matching (logistic regressions) on matching variables and entire pre treatment period t(-8,-1)
 - □ firm level: firm size, age, turnovers, tenure structures, wage share of employees with respect to working-class, education, age, and migration
 - nace3 level: share of market entries and leavers, unemployment rates, import and export growth
- 2. Truncate NN matches at 95th propensity score percentile of the treatment group
- 3. Radius matching
 - □ define radius as the 95th percentile of the absolute propensity score differences between T and C (common support)
 - □ All control firms within the radius of a treated firm are weighted proportional to the inverse of their distance to the treated firm and the weights are normalized to sum up to 1.

Propensity scores (stages of matching)

J⊼∩

T-test of matching (pre-treatment)

Unmatched sample				Matched sample						
Variable Names	т	С	T-C	t-val		Т	С	T-C	t-val	
Firm characteristics										
Firm size	167.806	148.52	19.29	3.06	•••	164.59	173.03	-8.44	1.26	
Formation	1979.551	1979.26	0.29	1.70		1979.43	1979.40	0.04	0.20	
Firm wage structure										
Average yearly wage	24979.402	25185.67	-206.27	1.08		24841.05	25395.77	-554.72	3.01	••
Sd of yearly wage	14248.549	14055.98	192.57	1.03		13934.30	14130.30	-196.00	1.27	
Firm quarterly fluctuations (s	share)									
New male employment	0.039	0.04	-0.00	0.83		0.04	0.04	-0.00	1.58	
New female employment	0.037	0.04	0.00	0.59		0.03	0.03	0.00	0.51	
New employment age < 25	0.022	0.02	-0.00	1.99		0.02	0.02	0.00	0.26	
New employment 25 - 50	0.049	0.05	0.00	0.56		0.04	0.05	-0.00	0.57	
New employment > 50	0.005	0.01	-0.00	0.58		0.00	0.01	-0.00	1.83	
Male layoffs	0.030	0.03	-0.00	2.97	•••	0.03	0.03	-0.00	1.95	
Female layoffs	0.027	0.03	-0.00	0.97		0.03	0.03	0.00	0.78	
Layoffs age < 25	0.014	0.02	-0.00	3.31	•••	0.01	0.01	0.00	0.25	
Layoffs age25 - 50	0.037	0.04	-0.00	1.44		0.04	0.04	-0.00	1.19	
Lavoffs age > 50	0.007	0.01	-0.00	1.35		0.01	0.01	-0.00	0.57	
Share of Employees by Educ	cation									
University degree	0.105	0.10	0.00	0.87		0.10	0.12	-0.02	5.46	••
High school degree	0.314	0.32	-0.00	1.19		0.31	0.32	-0.01	2.07	*
Apprenticeship examination	0.419	0.42	-0.01	1.85		0.42	0.41	0.01	3.98	••
Compulsory school	0.162	0.16	0.01	2.51		0.16	0.15	0.01	3.13	••
Share of employees by sex a	and age									
Female	0.454	0.45	0.01	1.42		0.46	0.45	0.01	1.71	
Male average age	38.248	38.21	0.04	0.35		38.32	38.32	0.00	0.04	
Female average age	37.673	37.62	0.05	0.55		37.82	37.62	0.21	2.00	
Male and age 25 - 55	0.431	0.43	0.00	0.42		0.43	0.43	-0.01	1.55	
Female and age 25 - 55	0.364	0.35	0.01	2.38		0.37	0.36	0.01	1.43	
Share of employees by working class										
Female blue collar	0.152	0.15	0.00	1.15		0.16	0.15	0.01	3.27	••
Male blue collar	0.289	0.30	-0.01	1.27		0.29	0.29	0.00	0.75	
Female white collar	0.245	0.24	0.00	0.81		0.25	0.25	-0.01	1.23	
Male white collar	0.218	0.21	0.00	1.36		0.21	0.22	-0.01	2.29	

Note: *p < 0.10,** p < 0.05,*** p < 0.01.

J⊻U

Estimation base

matching on firm level completed

- □ One treated firm can have several control firms.
- Weighting is used to account for distance and higher number of firms in the control group
- Essentially synthetic control groups

Individuals are merged to firm data

DiD Estimations are performed on individual level

	Treated	Control
Mass layoffs	545	5,078
Unique Firms	442	488
Individuals	49,039	422,818
Unique Individuals	41,731	45,272

Parallel trends

Number of SL days incl. Friday

Number of SL days incl. Monday

Number of SL incl. bridge days

Control - Treated

J⊼∩

Estimation of DiD (on individual level)

(I) Basic model

$$Y_{ift} = \alpha + \gamma t g_f + \tau post_t + \delta t g_f * post_t + \varepsilon_{ift}$$
(1)

(II) add firm, individual control variables and industry fixed effects

$$Y_{ift} = \alpha + \gamma tg_f + \tau post_t + \delta tg_f * post_t + \beta F_{ft} + \kappa X_{ift} + \mathbf{I_f} + \varepsilon_{ift}$$
(2)

(III) add trends

$$Y_{ift} = \alpha + \gamma tg_f + \tau post_t + + \delta tg_f * post_t + \beta F_{ft} + \kappa X_{ift} + \mathbf{I}_f + \iota_0 trend_t + \varepsilon_{ift}$$
(3)

(IV) add treatment group specific trends

$$Y_{ift} = \alpha + \gamma tg_f + \tau post_t + \delta tg_f * post_t + \beta F_{ft} + \kappa X_{ift} + \mathbb{I}_{f} + \iota_0 trend_t$$
(4)
+ $\iota_1 tg_f * trend_t + \varepsilon_{ift}$ 16/22

Results - absenteeism

	(1)	(2)	(3)	(4)	Sample mean
Number of SL days overall	-0.0051	0.0018	-0.0071	-0.0105	2.2715
	(0.0539)	(0.0520)	(0.0542)	(0.0524)	(6.7178)
Number of SL days inkl. Monday	-0.0010	-0.0002	-0.0015	-0.0019	0.3067
	(0.0075)	(0.0072)	(0.0075)	(0.0072)	(0.9557)
Number of SL days inkl. Friday	-0.0017	-0.0005	-0.0022	-0.0026	0.3448
	(0.0077)	(0.0075)	(0.0078)	(0.0076)	(1.0080)
Number of SL inkl. bridge days	-0.0013	-0.0012	-0.0013	-0.0013	0.0258
	(0.0015)	(0.0015)	(0.0016)	(0.0016)	(0.1847)
Single day SL on Mon/Fri and bridge days	-0.001	-0.0008	-0.0008	-0.0008	0.0073
	(0.0006)	(0.0006)	(0.0006)	(0.0006)	(0.0927)
Individual level fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	
Individual level controls		\checkmark	\checkmark	\checkmark	
Firm level controls		\checkmark	\checkmark	\checkmark	
Industry level fixed effects		\checkmark	\checkmark	\checkmark	
Linear time trend			\checkmark	\checkmark	
Quarter specific cohort trends				\checkmark	
Observations	8,158,793				

Note: Doctor visits, health spa stays, and sick leaves are measured in days per quarter. Psychiatric drug use is reported as 1 if they were consumed during a quarter and 0 otherwise. Psychiatric drug expenditures are measured in Euro per quarter. Standard errors in parentheses are clustered on industry level, $\gamma_p < 0.05$, $\gamma_p < 0.05$

J⊼∩

Results - health related

	(1)	(2)	(3)	(4)	Sample mean		
Doctors visits	0.0895	0.1047	0.1041	0.0927	4.7733		
	(0.0606)	(0.0574)	(0.0598)	(0.0582)	(7.9735)		
Health spa stay	-0.0001	-0.0001	-0.0001	-0.0001	0.0032		
	(0.0004)	(0.0004)	(0.0004)	(0.0004)	(0.0565)		
Psychiatric drug use	0.0007	0.0010	0.0008	0.0009	0.0162		
-,	(0.0010)	(0.0010)	(0.0010)	(0.0010)	(0.1264)		
Psychiatric drug expenditures	0.0817	0.0561	0.0370	0.0383	0.6450		
, , , , , , , , , , , , , , , , , , , ,	(0.0784)	(0.0617)	(0.0544)	(0.0539)	(7.0670)		
Individual level fixed effects	\checkmark	\checkmark	\checkmark	\checkmark			
Individual level controls		\checkmark	\checkmark	\checkmark			
Firm level controls		\checkmark	\checkmark	\checkmark			
Industry level fixed effects		\checkmark	\checkmark	\checkmark			
Linear time trend			\checkmark	\checkmark			
Quarter specific cohort trends				\checkmark			
Observations	8,158,793						

Note: Doctor visits, health spa stays, and sick leaves are measured in days per quarter. Psychiatric drug use is reported as 1 if they were consumed during a quarter and 0 otherwise. Psychiatric drug expenditures are measured in Euro per quarter. Standard errors in parentheses are clustered on imgestry leave p = 0.00, "** p < 0.00," ** p < 0.00."

Conclusion

Result

- survivors do not increase sick leaves after ML
- □ single day sick leaves do not increase (against shirking)
- $\hfill\square$ other health outcomes are zero
- BUT: no information on whether employees go to work despite sickness
- Contributions
 - □ No absenteeism increase after ML (vs. experiments)
 - we applied a plausible identification strategy for registry data

Limitations

- □ we cannot identify the channel(s) that lead to or prevent sick leaves (net effects might be zero)
- □ we still encounter some problems with the data preparation

Prospect and ambitions

Data

- □ renewed bottom-up data preparation
- □ introduce new medical outcomes
- Tune matching
- Analysis
 - □ Investigate other control groups
 - Explore heterogeneous effects
 - individual: blue/white collar, age, sex,...
 - · firm-level: size of firm, magnitude of ML
 - industry-level
 - Expand time horizon of Analysis (short and medium term effects)
 - narrow down indicators of possible channels (delayed sick leaves, increased exit rates, ...)

References

Allen, T. D., Freeman, D. M., Russell, J. E. A., Reizenstein, R. C. & Rentz, J. O. (2001), 'Survivor Reactions to Organizational Downsizing: Does time ease the pain?', *Journal of Occupational and Organizational Psychology* 74(2), 145–164.

URL: http://dx.doi.org/10.1348/096317901167299

- Chabe-Ferret, S. (2015), 'Analysis of the Bias of Matching and Difference-in-Difference under Alternative Earnings and Selection Processes', *Journal of Econometrics* **185**(1), 110 – 123. URL: http://www.sciencedirect.com/science/article/pii/S0304407614002437
- Datta, D. K., Guthrie, J. P., Basuil, D. & Pandey, A. (2010), 'Causes and Effects of Employee Downsizing: A Review and Synthesis', *Journal of Management* 36(1), 281–348.
- Drzensky, F. & Heinz, M. (2016), 'The Hidden Costs of Downsizing', *The Economic Journal* **126**(598), 2324–2341. URL: http://dx.doi.org/10.1111/ecoj.12216
- Goesaert, T., Heinz, M. & Vanormelingen, S. (2015), 'Downsizing and Firm Performance: Evidence from German firm data', Industrial and Corporate Change 24(6), 1443–1472. URL: + http://dx.doi.org/10.1093/ioc/dtv007
- Heckman, J. J., Ichimura, H. & Todd, P. E. (1997), 'Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme', *The Review of Economic Studies* 64(4), 605–654. URL: http://www.jstor.org/stable/2971733
- Heinz, M., Jeworrek, S., Mertins, V., Schumacher, H. & Sutter, M. (2017), 'Measuring Indirect Effects of Unfair Employer Behavior on Worker Productivity - A Field Experiment', MPI Collective Goods Preprint 2017(22).
- Huber, M., Lechner, M. & Steinmayr, A. (2015), 'Radius Matching on the Propensity Score with Bias Adjustment: tuning parameters and finite sample behaviour', *Empirical Economics* 49(1), 1–31. URL: https://doi.org/10.1007/s00181-014-0847-1
- Huber, M., Lechner, M. & Wunsch, C. (2013), 'The Performance of Estimators Based on the Ppropensity Score', Journal of Econometrics 175(1), 1 – 21. URL: http://www.sciencedirect.com/science/article/bii/S0304407613000390
- Imbens, G. (2004), 'Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review', *Review of Economics and Statistics*.

J⊻U

- Marcus, J. (2014), 'Does Job Loss Make You Smoke and Gain Weight?', *Economica* 81(324), 626–648. URL: http://dx.doi.org/10.1111/ecca.12095
- Morrison, E. W. & Robinson, S. L. (1997), 'When Employees Feel Betrayed: A Model of How Psychological Contract Violation Develops', The Academy of Management Review 22(1), 226–256. URL: http://www.jstor.org/stable/259230
- Osthus, S. (2012), 'Health Effects of Downsizing Survival and Job Loss in Norway', *Social Science & Medicine* **75**(5), 946 – 953. URL: http://www.sciencedirect.com/science/article/pii/S0277953612004042
- Osthus, S. & Mastekaasa, A. (2010), 'The Impact of Downsizing on Remaining Workers Sickness Absence', Social Science & Medicine 71(8), 1455–1462. URL: http://www.sciencedirect.com/science/article/pii/S0277953610005824
- Sigursteinsdottir, H. & Rafnsdottirr, G. L. (2015), 'Sickness and Sickness Absence of Remaining Employees in a Time of Economic Crisis: A study among employees of municipalities in Iceland', Social Science & Medicine 132(Supplement C), 95 – 102. URL: http://www.sciencedirect.com/science/article/pii/S0277953615001677
- Travaglione, A. & Cross, B. (2006), 'Diminishing the Social Network in Organizations: Does there need to be such a phenomenon as survivor syndrome after downsizing?', *Strategic Change* 15(1), 1–13. URL: http://dx.doi.org/10.1002/jsc.743
- Vahtera, J., Kivimäki, M., Pentti, J., Linna, A., Virtanen, M., Virtanen, P. & Ferrie, J. E. (2004), 'Organisational Downsizing, Sickness Absence, and Mortality: 10-town prospective cohort study', *BMJ* 328(7439), 555. URL: http://www.bmj.com/content/328/7439/555
- van Dick, R., Drzensky, F. & Heinz, M. (2016), 'Goodbye or Identify: Detrimental Effects of Downsizing on Identification and Survivor Performance', *Frontiers in Psychology* 7, 771. URL: https://www.frontiersin.org/article/10.3389/fpsyg.2016.00771

J⊻U