Skill Demand and Wages: Evidence from Online Job Posts in Austria

Lennart Ziegler

University of Vienna

Arbeitsmarktworkshop - 9 November 2018

Lennart Ziegler

Motivation

Technological progress drives substantial changes in the demand for skills

- What skills are currently needed on the labor market?
- Leading theory of skill-biased technological change (SBTC):
 - Computerization \Rightarrow Non-routine analytic and interactive tasks $\uparrow \Rightarrow$ Analytic and managerial skills \uparrow

<u>Common approach to measure skill demand</u>: Infer profile from occupational dictionaries

 Comprehensive characterization but only periodically revised & not available for many countries

Contribution

This paper: Infer skill requirements from online job posts

Analysis of skill demand and returns in Austrian labor market

- 1. Identify most frequent skill requirements
- 2. Estimate returns to different types of skills
- 3. Quantify spatial differences in skill requirements and contribution to urban-rural wage gap

Methodological contribution: Online job posts as source in labor market research

- How much information about skills do job ads contain?
- Are these skill measures able to explain wage differences?
- Focus on interpretation, limitations, measurement error

Literature

Returns to cognitive and social skills

- Test scores (Bowles, 2001; Heckman et al., 2006; Lindqvist & Vestman, 2010)
- Survey data (Hanushek et al., 2015)
- Occupational dictionaries (Autor & Handel, 2013)
- Job ads (Kahn & Deming, 2018)

Spatial differences in skill demand/returns

- Urban-rural wage gap in many countries (Moretti, 2010)
- Determinants: Worker migration (Glaeser & Mare, 2001), human capital spillovers (Moretti, 2004), amenities (Chen & Rosenthal, 2008)

Wage setting in Austria

The vast majority of Austrian workers (>95%) is covered by collective bargaining agreements (CBAs)

- Most are industry-specific, some firm-level agreements
- No collective bargaining in a few sectors

Working time, wages and other benefits (holiday pay etc.) are specified for each profession

- Pay scale often based on age and experience
- Collective bargaining wage defines legally binding lower bound
- Employers may overpay depending on qualification and experience

Wage posting in job ads

As of March 2011, employers are required to report the CBA wage in job postings

- Since August 2013, also in sectors without collective bargaining agreement
- Employers may be fined for violation by local authorities
- Posted wage should exclude bonus or other extra payments
- Unit of time must be reported (hour, month or year)

Examples:

- "[...] offers a payment of 2.757,40 EUR (gross) per month (14 times p.a.) [...]"
- "We offer you a gross annual wage starting from EUR 40,000 and depending on your qualification and experience."

Final wage depends on qualification of applicant:

$$Actual wage = \underbrace{Posted wage}_{f(Min. qualification)} + \underbrace{Overpay}_{g(Actual qualification - Min. qualification)}$$

- Match with skill requirements $\uparrow \Rightarrow$ Qualification \uparrow
- $\frac{\partial \text{Actual wage}}{\partial \text{Skill}} > \frac{\partial \text{Posted wage}}{\partial \text{Skill}}$

 \Rightarrow Skill returns to posted wages are lower bound for actual returns

Job ads can only give rough profile description

- Compared to occupational dictionaries, focus on different scope of skills
 - More emphasis on soft skills (e.g flexibility)
 - Less emphasis on hard skills (e.g. numeracy skills)
- Difficult to describe relative importance of skills
- Emphasis on major skills, omittance of minor skills

Rationale to omit minor skills:

- 1. Not discourage otherwise suitable job applicants
- 2. Put implicitly more weight on major skills

Example: Programmers and social skills

Let s_{ki} be a continuous relevance measure of skill k

- Model with occupational dictionaries: wage_i = $\sum_{k=1}^{K} \alpha_k s_{ki}$
- Model with job ad descriptions: $wage_i = \sum_{k=1}^{K} \beta_k I(s_{ki} \ge \underline{s_k})$

Data

Job posts scraped from *karriere.at* every 2-4 weeks (June - October 2018)

• Portal claims to be "biggest career website in Austria"

Skills and wages inferred from individual ad text:

- Skills matched on keywords
- Wages converted to monthly earnings

Additional information from ad classification:

- Experience required (yes/no)
- Type of work (regular, vocational training, internship)
- Extent of work (full-time/part-time)
- Days since ad posted
- Industry group

Sample restrictions:

- Full-time positions
- Internships and vocational training excluded
- Job ads without posted wages or outside Austria
- \rightarrow Sample size: 41,374 ads

Job ad example

AML Data Analyst (m/f) Paysafe Wien · Vollzeit · Berufserfahrung · 16.10.2018

Firmenprofil ansehen

Job ad example

Your profile

- A-levels or equivalent, with at least 2 years' professional experience preferably in Fraud & Anti Money Laundering, Risk Assessment or data analysis
- · Ability to investigate at database level and usage of BI tools (e.g. Tableau) as well as basic skills in SQL
- Deep knowledge of meta data and technical parameters at different kinds of network communication (http, https, SSL, TCP, UDP, RDP, VPN...) or anonymization tools like TOR
- Knowledge of ongoing threads regarding cybercrime, e.g. malware, ransomware, botnets, different exploit rootkits and other IT system vulnerabilities
- · Powers of deduction to translate manual processes to automated processes
- · Experience with prepaid products, e-wallet payment solutions or crypto currencies desirable
- Excellent MS-Office knowledge (especially Excel)
- · German skills and fluent English skills required
- · Strong analytical skills with an eye for detail as well as affinity for numbers
- · Independent, collaborative and pro-active working style
- · Results-focused with good communication skills

We Offer

- · Challenging and rewarding environment to develop your skills and expertise further
- · A fast paced and evolving business with international background
- · Personal atmosphere where successfully reached goals get celebrated at team events
- · A modern office providing an open and friendly working atmosphere
- · International development and career opportunities
- · Flexi-time, mobile working and other great company benefits
- An annual gross salary starting from € 30.000,00 with a view to increase based on the qualification and experience

If you are interested in joining our team, please apply with your CV and cover letter online.

Take a look and visit us!

Lennart Ziegler

Sample statistics

	Mean	Std. Dev.	Observations				
Job post characteristics							
# words per ad	266.57	95.55	41,374				
Days online	5.29	3.79	41,374				
For beginners	0.04	0.19	41,374				
College	0.24	0.43	41,374				
Monthly salary	2,701.85	866.08	41,374				
Firm Characteristic	CS						
1-10 employees	0.11	0.31	34,077				
11-100 employees	0.27	0.44	34,077				
101-500 employees.	0.28	0.45	34,077				
>500 employees	0.34	0.47	34,077				
Firm age (in years)	47.25	62.29	14,074				

Table: Job posts and firm characteristics

Representativeness

Job ads versus universe of vacancies

- Online job posts tend to over-represent white collar jobs
- Some vacancies are filled internally

Methodology:

• Identify skill requirements based on text pattern in job description

Procedure:

- 1. Rank words in job description by overall frequency
- 2. Extract keywords that describe job skills
- 3. Group words into skill categories

Text-pattern analysis

Skill group	Specific skill	Examples		
	Analytical skills	Problemlösungskompetenz, analytisches Denken		
Hard skills	Programming	Programmierer, Programming, Python, SQL		
	MS-Office skills	MS Office, MS-Office, Microsoft Office		
	Foreign language	Englisch, Französisch, Italenisch		
Communication skills	Communication skills	Kommunikationsfähigkeit, kommunikativ		
Managerial skills	Entrepreneurial skills	Unternehmerisches Denken/Geist		
managenar sinns	Leadership skills	Führungsstärke, Führung		
	Teamwork	Teamwork, gerne im Team arbeiten, Teamplayer		
	Organizational skills	Organisationstalent, Organisationsfähigkeit		
Other soft skills	Self-reliance	Eigeninitiative, eigenverantwortlich		
	Assertiveness	Durchsetzungsvermögen		
	Creativity	Kreativität, kreativ		
	Stress tolerance	Belastbarkeit, Stressresistenz, Stress		
	Reliability	Zuverlässigkeit, Verlässlichkeit		

Number of skills

Lennart Ziegler

Skill Demand and Wages

18/32

Skill types						
	Share		Share			
Communicative	0.48	Leadership	0.18			
Language	0.48	Stress-tolerant	0.15			
Teamwork	0.40	Programming	0.14			
Self-reliant	0.34	Organized	0.10			
Analytical	0.32	Creative	0.09			
MS-Office skills	0.28	Assertive	0.07			
Reliable	0.20	Entrepreneurial	0.05			
C)bservatio	ns: 41,374				

Table: Relative frequency of skill types

Wage regressions

$$log(wage_{ij}) = S'_{ij}\beta + X'_{ij}\gamma + \delta_j + u_{ij}$$

- S_{ij}: Skill measure of ad *i* of firm *j*
 - 1. Number of skills (#*skills*_i \in [0, 14])
 - 2. Vector of skill type indicators
- X_{ij}: Control variables (Beginner indicator, days online, college degree required)
- δ_j : Firm fixed effects

Posted wages determined by productivity and industry/firm bargaining power

 \Rightarrow Firm fixed effects account for differential bargaining power

Number of skills

Figure: Wage by number of job-ad skills (Note: Last group contains ads with \geq 9 skills)

Lennart Ziegler

Skill Demand and Wages

21/32

Number of skills

	(1)	(2)	(3)	(4)		
# skills	0.020***	0.012***	0.017***	0.013***		
	(0.001)	(0.001)	(0.001)	(0.001)		
College		0.160***		0.119***		
		(0.003)		(0.003)		
Beginner		-0.174***		-0.158***		
		(0.007)		(0.007)		
Days online		0.001**		0.000		
		(0.000)		(0.000)		
Constant	7.793***	7.779***	7.586***	7.587***		
	(0.003)	(0.004)	(0.153)	(0.148)		
Firm FE			\checkmark	\checkmark		
Adj. <i>R</i> ²	0.014	0.078	0.455	0.486		
Observations	41,374					

Note – Standard errors are reported in parentheses. * significant at 10% level, ** significant at 5% level, *** significant at 1% level.

Table: Impact on logarithm of wages

Lennart Ziegler

Skill types

	(1)			(2)	
Hard skills					
Analytical	0.098	(0.003)		0.053	(0.003)
Programming	0.087	(0.004)		0.033	(0.003)
MS-Office skills	-0.079	(0.003)		-0.065	(0.003)
Language	0.083	(0.003)		0.043	(0.003)
Managerial	0.146	(0.003)		0.131	(0.003)
Soft skills					
Communicative	0.024	(0.003)		0.017	(0.002)
Other soft skills	-0.050	(0.003)		-0.022	(0.003)
Firm FE & controls				,	(
Adj. R-Squared	0.138			0.5	530
Observations	41,374				

Note – Standard errors are in parentheses. **Bold** coefficients are significant at the 1%-level. Control variables include *college*, *beginner* and *days online*.

Table: Impact on logarithm of wages

Lennart Ziegler

Measurement error

Text-pattern analysis may suffer from measurement error

- Under-detection: Paraphrasing skill instead of naming
- **Over-detection**: Wrongfully attribute characteristic to applicant profile

What is the potential bias due to measurement error?

- Assumption: Measurement error is classical
- Notation: Measured skill \tilde{S}_i and actual skill indicator S_i
- Under-detection probability: $r_u = P(\tilde{S}_i = 0 | S_i = 1)$
- Over-detection probability: $r_o = P(\tilde{S}_i = 1 | S_i = 0)$

Measurement error

True effect:

$$\beta = E(y_i|S_i = 1) - E(y_i|S_i = 0)$$

Measured effect:

$$b = E(y_i | \tilde{S}_i = 1) - E(y_i | \tilde{S}_i = 0)$$

= $[1 - P(S_i = 0 | \tilde{S}_i = 1) - P(S_i = 1 | \tilde{S}_i = 0)] \times \beta$
= $(1 - \frac{r_o \times [\frac{1 - r_u - P(\tilde{S}_i = 1)}{1 - r_u - r_o}]}{P(\tilde{S}_i = 1)} - \frac{r_u \times [\frac{P(\tilde{S}_i = 1) - r_o}{1 - r_u - r_o}]}{1 - P(\tilde{S}_i = 1)}) \times \beta$

Measurement error

Figure: Potential measurement error (Example: Analytical skills $(r_o = 0)$)

Lennart Ziegler

Skill Demand and Wages

26/32

Analysis of spatial differences in skill demand and returns

- 1. Compare skill requirements between rural and urban districts
- 2. Decompose urban-rural wage gap into level and return differences in skills

 \Rightarrow Ads classified as **urban** if workplace in districts *Vienna*, *Linz*, *Graz*, *Salzburg*, *Innsbruck*, *Klagenfurt* (\rightarrow 63% of job ads)

Job ads across Austria

Figure: Frequency of job ads by district (<u>Note</u>: Highest frequency group refers to 400 ads or more.)

Lennart Ziegler

Skill Demand and Wages

28/32

Urban-rural skill shares

Urban		Rural			
Skill	Share	Skill	Share		
Communicative	0.51	Communicative	0.44		
Language	0.51	Language	0.44		
Teamwork	0.39	Teamwork	0.41		
Self-reliant	0.35	Self-reliant	0.32		
Analytical	0.35	MS-Office	0.28		
MS-Office	0.28	Analytical	0.27		
Leadership	0.19	Reliable	0.23		
Reliable	0.18	Leadership	0.18		
Programming	0.16	Stress-tolerant	0.15		
Stress-tolerant	0.14	Programming	0.11		
Organized	0.10	Organized	0.10		
Creative	0.10	Creative	0.08		
Assertive	0.06	Assertive	0.07		
Entrepreneurial	0.06	Entrepreneurial	0.05		
Mean skills: 3	3.37	Mean skills: 3.14			
N=25,862		N=15,512			

Wage decomposition

Separate estimation of wage-regression by regions:

$$log(wage_{gi}) = \beta_{g0} + \sum_{k=1}^{14} \beta_{gk} S_{gki} + u_{gi}, \ g = U, R$$

Rewrite total wage gap $\hat{\Delta} = \overline{\textit{log}(\textit{wage}_U)} - \overline{\textit{log}(\textit{wage}_R)}$ as

$$\hat{\Delta} = \underbrace{(\hat{\beta}_{U0} - \hat{\beta}_{R0}) + \sum_{k=1}^{14} (\hat{\beta}_{Uk} - \hat{\beta}_{Rk}) \bar{S}_{Uk}}_{\text{Wage structure effect}} + \underbrace{\sum_{k=1}^{14} (\bar{S}_{Uk} - \bar{S}_{Rk}) \hat{\beta}_{Rk}}_{\text{Composition effect}}$$

where *Rural* serves as base group.

<u>Alternatives</u>: (i) Urban as base group, (ii) Weighted by relative group size

Wage decomposition

	Total	Constant	Skill returns	Skill levels
Base: Rural				
Estimate	0.082	0.092	-0.029	0.019
Standard error	(0.003)	(0.006)	(0.005)	(0.001)
Base: Urban				
Estimate	0.082	0.092	-0.032	0.023
Standard error	(0.003)	(0.006)	(0.005)	(0.001)
Base: Weighted	_			
Estimate	0.082	0.092	-0.031	0.021
Standard error	(0.003)	(0.006)	(0.005)	(0.001)

Note – Bootstrapped standard errors are in parentheses. In the weighted decomposition, return differences are $\sum_{k=1}^{14} (\tilde{\beta}_k - \hat{\beta}_{0k}) \bar{S}_{0k} + \sum_{k=1}^{14} (\hat{\beta}_{1k} - \tilde{\beta}_k) \bar{S}_{1k}$ and level differences are $\sum_{k=1}^{14} (\bar{S}_{1k} - \bar{S}_{0k}) \tilde{\beta}_{0k}$, where $\tilde{\beta}_k = p \hat{\beta}_{0k} + (1-p) \hat{\beta}_{1k}$ and p is the relative size of the base group.

Conclusion

Online job ads allow to quantify skill demand and returns

- Skill requirements have substantial explanatory power in wage regressions (net of firm FE)
- Hard skills are associated with higher returns than soft skills
- · Measurement error unlikely to explain differences

Demand differences in key skill requirements between urban and rural districts

• Wage gap decomposition suggests higher skill return but lower *valuable* skill levels in rural areas

Skill correlation matrix

	Comm.	Ana.	Creat.	Team.	Self-rel.	Asser.	Org.	Strtol.	Rel.	Entr.	Lead.	Progr.	Lang.
Ana.	0.12												
Creat.	0.05	0.05											
Team.	0.07	0.02	0.01										
Self-rel.	0.07	0.04	0.06	0.05									
Asser.	0.10	0.07	0.00	0.02	0.04								
Org.	0.11	-0.03	0.03	0.04	0.04	0.06							
Strtol.	0.02	-0.04	-0.02	0.10	0.03	0.07	0.10						
Rel.	-0.04	-0.07	-0.02	0.08	0.01	0.00	0.05	0.09					
Entr.	0.07	0.06	0.01	-0.03	0.02	0.08	0.03	0.00	-0.03				
Lead.	0.06	0.00	-0.00	-0.05	0.02	0.11	0.09	0.01	-0.02	0.12			
Progr.	-0.02	0.14	0.05	0.02	-0.03	-0.07	-0.09	-0.08	-0.07	-0.06	-0.11		
Lang.	0.14	0.17	0.03	0.01	-0.00	0.04	0.04	-0.02	-0.09	0.01	0.01	0.08	
Admin.	0.07	-0.02	-0.01	0.06	0.08	0.07	0.13	0.10	0.07	0.02	0.03	-0.18	0.06

Table: Correlation matrix (**bold**: significant at 1%-level)

Lennart Ziegler

Specific skill types (1)

	(1	1)		(2)		
Analytical	0.091	(0.003)	0.050	(0.002)		
Programming	0.086	(0.004)	0.034	(0.003)		
MS-Office	-0.073	(0.003)	-0.062	(0.003)		
Language	0.081	(0.003)	0.042	(0.003)		
Entrepreneurial	0.097	(0.006)	0.092	(0.005)		
Leadership	0.142	(0.003)	0.129	(0.003)		
Organized	- 0.044 [.	(0.004)]	-0.028	(0.004) []		
Firm FE & controls				\checkmark		
Adj. R-Squared	0.1	60		0.541		
Observations			41,374			

Note - Standard errors are in parentheses. Bold coefficients are significant at the 1%-level.

Lennart Ziegler

Specific skill types (2)

	(1)	(2)			
Communicative	[. 0.021] (0.003)	0.014	[] (0.003)		
Teamwork	-0.029	(0.003)	-0.015	(0.002)		
Creative	-0.001	(0.005)	0.011	(0.005)		
Self-reliant	0.011	(0.003)	0.005	(0.002)		
Assertive	0.076	(0.005)	0.064	(0.004)		
Stress-tolerant	-0.072	(0.004)	-0.030	(0.003)		
Reliable	-0.046	(0.003)	-0.037	(0.003)		
Firm FE & controls Adj. R-Squared	0.1	160		√ 0.541		
Observations	41,374					
Note – Standard errors are reported in parentheses. Bold coefficients are significant at the 1%-level						

Lennart Ziegler

Skill interactions

	(1)	(2)	(3)	(4)	
Analytical	0.091***	0.097***	0.050***	0.053***	
	(0.003)	(0.004)	(0.002)	(0.004)	
Communicative	0.021***	0.024***	0.014***	0.016***	
	(0.003)	(0.003)	(0.002)	(0.003)	
Analytical $ imes$ Communicative		-0.011*		-0.006	
		(0.006)		(0.005)	
Intercept	7.783***	7.781***	7.612***	7.612***	
	(0.003)	(0.003)	(0.140)	(0.140)	
Firm FE & controls			\checkmark	\checkmark	
Adj. R-Squared	0.160	0.160	0.541	0.541	
Observations	41,374				

Note – Standard errors are reported in parentheses. * significant at 10% level, ** significant at 5% level, *** significant at 1% level. All regressions control for remaining skill types. Other control variables are *college, beginner* and *days online*.

Lennart Ziegler

Wage decomposition

	Base: Rural		Base:	Urban	Weighted			
	Coeff.	SE	Coeff.	SE	Coeff.	SE		
Total	0.082	(0.003)	0.082	(0.002)	0.082	(0.003)		
Constant	0.085	(0.005)	0.085	(0.006)	0.085	(0.006)		
Return di	fference	S						
Skills	-0.022	(0.005)	-0.026	(0.005)	-0.024	(0.005)		
College	-0.010	(0.002)	-0.007	(0.001)	-0.008	(0.001)		
Level differences								
Skills	0.016	(0.001)	0.020	(0.001)	0.019	(0.001)		
College	0.013	(0.001)	0.009	(0.001)	0.011	(0.001)		

Note – Bootstrapped standard errors are in parentheses. In the weighted decomposition, return differences are $\sum_{k=1}^{K} (\tilde{\beta}_{k} - \hat{\beta}_{0k}) \bar{X}_{0k} + \sum_{k=1}^{K} (\hat{\beta}_{1k} - \tilde{\beta}_{k}) \bar{X}_{1k}$ and level differences are $\sum_{k=1}^{K} (\bar{X}_{1k} - \bar{X}_{0k}) \tilde{\beta}_{0k}$, where $\tilde{\beta}_{k} = p \hat{\beta}_{0k} + (1 - p) \hat{\beta}_{1k}$ and p is the relative size of the base group.

Lennart Ziegler