GRAN SASSO SCIENCE INSTITUTE

The geography of the **Robotisation-Health nexus**

Evidence from Italian provinces

S

G

Arsène Perrot, Fabiano Compagnucci, Paolo Veneri

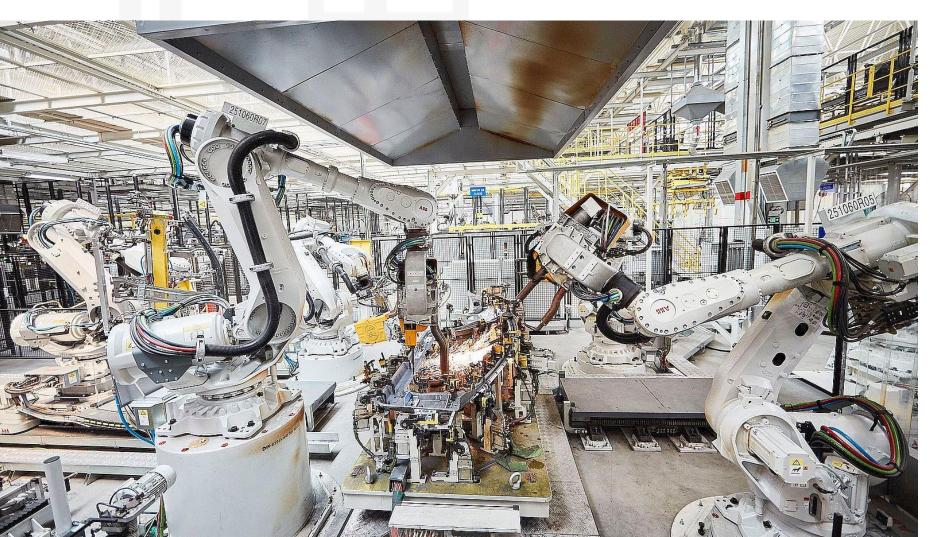
Young Economists Conference – Wien, 26-27 September 2024 www.gssi.it f 🖌 in 🞯 🛗



G S S I

Effects of robots are usually considered from the labour market perspective – wages, employment

Acemoglu & Restrepo, 2020; Graetz & Michaels, 2018



Effects of robots are usually considered from the labour market perspective – wages, employment

Acemoglu & Restrepo, 2020; Graetz & Michaels, 2018

Happiness

Health impacts Life Satisfaction and

Angner et al., 2009, 2013

Effects of robots are usually considered from the labour market perspective – wages, employment

Acemoglu & Restrepo, 2020; Graetz & Michaels, 2018

Happiness

Health impacts Life Satisfaction and

Angner et al., 2009, 2013

Robots have civil applications (e.g., Service Robots)

Gentili et al., 2020; Hägele et al., 2016

Literature

G S S I

Literature

Economic effects of automation differ across

The workforce

- Space: positive in "dynamic", high-skill (metropolitan) regions Gentili et al., 2020; lammarino et al., 2019; Valentini et al., 2023
- Mediated by local factors : skills, cultures, conventions... Frenkel, 2003; Moretti, 2012; Salais, 1989

Acemoglu et al., 2023; Compagnucci et al., 2022; Cuccu & Royuela, 2024

Literature

Economic effects of automation differ across

The workforce

Acemoglu et al., 2023; Compagnucci et al., 2022; Cuccu & Royuela, 2024 Space: positive in "dynamic", high-skill (metropolitan) regions Gentili et al., 2020; Iammarino et al., 2019; Valentini et al., 2023 Mediated by local factors : skills, cultures, conventions... Frenkel, 2003; Moretti, 2012; Salais, 1989

Scarce literature on robots and health (China, US, Germany)

- Robots improve physical health -
- Ambiguous trend for mental health

Abeliansky et al., 2024; Gihleb et al., 2022; Gunadi & Ryu, 2021; Liu et al., 2024

Research Question

G S S I

Research Question

What are the health implications of large-scale automation?

Are they different across space ?

G S S I

Reallocation away from physically intensive tasks...

Gihleb et al., 2022; Gunadi & Ryu, 2021; Karwowski et al., 1988; Spath & Braun, 2021

Reallocation away from physically intensive tasks...

Gihleb et al., 2022; Gunadi & Ryu, 2021; Karwowski et al., 1988; Spath & Braun, 2021

...determine new potential hazards

Matthias et al., 2011; Spath & Braun, 2021

Reallocation away from physically intensive tasks...

...determine new potential hazards

Matthias et al., 2011; Spath & Braun, 2021

... towards cognitively routine tasks

Braverman, 1998; Nikolova et al., 2023

Gihleb et al., 2022; Gunadi & Ryu, 2021; Karwowski et al., 1988; Spath & Braun, 2021

Reallocation away from physically intensive tasks... Gihleb et al., 2022; Gunadi & Ryu, 2021; Karwowski et al., 1988; Spath & Braun, 2021

...determine new potential hazards

Matthias et al., 2011; Spath & Braun, 2021

... towards cognitively routine tasks

Braverman, 1998; Nikolova et al., 2023

Automation is a stress driver at work... Bonde, 2008; Körner et al., 2019; Stansfeld & Candy, 2006; Szalma & Taylor, 2011

Reallocation away from physically intensive tasks... Gihleb et al., 2022; Gunadi & Ryu, 2021; Karwowski et al., 1988; Spath & Braun, 2021

...determine new potential hazards

Matthias et al., 2011; Spath & Braun, 2021

... towards cognitively routine tasks Braverman, 1998; Nikolova et al., 2023

Automation is a stress driver at work... Bonde, 2008; Körner et al., 2019; Stansfeld & Candy, 2006; Szalma & Taylor, 2011

...and some found it to increase death rates outside of the workplace

O'Brien et al., 2022; Venkataramani et al., 2020; Venkataramani & O'Brien, 2020

Reallocation away from physically intensive tasks... Gihleb et al., 2022; Gunadi & Ryu, 2021; Karwowski et al., 1988; Spath & Braun, 2021

...determine new potential hazards

Matthias et al., 2011; Spath & Braun, 2021

... towards cognitively routine tasks Braverman, 1998; Nikolova et al., 2023

Automation is a stress driver at work... Bonde, 2008; Körner et al., 2019; Stansfeld & Candy, 2006; Szalma & Taylor, 2011

...and some found it to increase death rates outside of the workplace

O'Brien et al., 2022; Venkataramani et al., 2020; Venkataramani & O'Brien, 2020

Socio-economic context matters for mental health Abeliansky et al., 2024 ; Flynn et al., 2021; Gihleb et al., 2022; Liu et al., 2024

DIRECT

INDIRECT

Reallocation away from physically intensive tasks... Gihleb et al., 2022; Gunadi & Ryu, 2021; Karwowski et al., 1988; Spath & Braun, 2021

...determine new potential hazards Matthias et al., 2011; Spath & Braun, 2021

... towards cognitively routine tasks Braverman, 1998; Nikolova et al., 2023

Automation is a stress driver at work... Bonde, 2008; Körner et al., 2019; Stansfeld & Candy, 2006; Szalma & Taylor, 2011

...and some found it to increase death rates outside of the workplace O'Brien et al., 2022; Venkataramani et al., 2020; Venkataramani & O'Brien, 2020

Socio-economic context matters for mental health Abeliansky et al., 2024 ; Flynn et al., 2021; Gihleb et al., 2022; Liu et al., 2024

Space is relevant

- Industrialisation's geography -Storper & Walker, 1989
- Institutional variations Brenner et al., 2010
- Job behaviours, quality, functions -Akerlof, 1976; Lunardon, 2024; OECD, 2017; Rosenthal & Strange, 2008
- Workplace relations, conventions and cultures -

Frenkel, 2003; Salais, 1989; Storper & Walker, 1989

Space is relevant

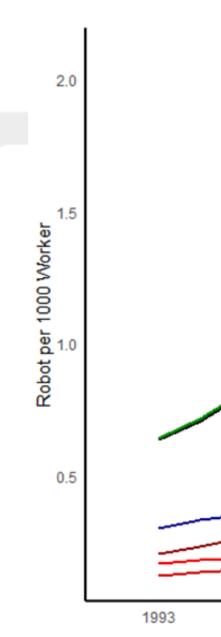
- Industrialisation's geography -Storper & Walker, 1989
- Institutional variations Brenner et al., 2010
- Job behaviours, quality, functions -Akerlof, 1976; Lunardon, 2024; OECD, 2017; Rosenthal & Strange, 2008
- Workplace relations, conventions and cultures -Frenkel, 2003; Salais, 1989; Storper & Walker, 1989
- Health geography Curtis & Rees Jones, 1998

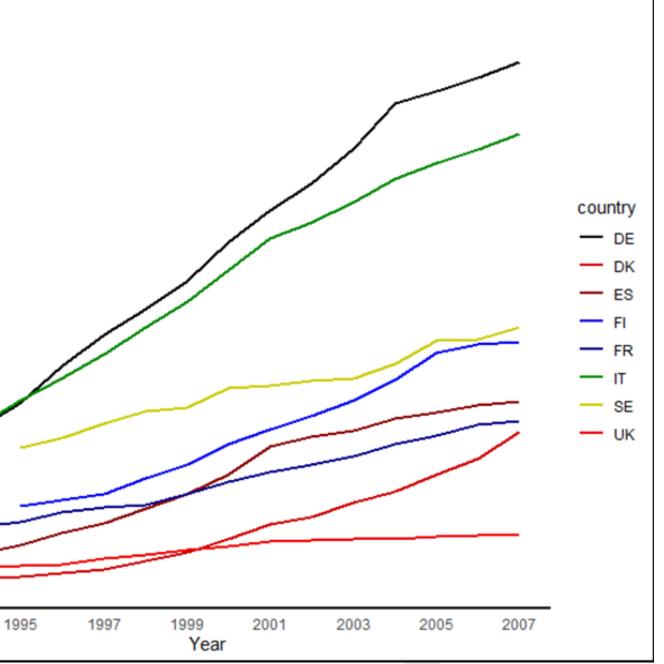
Space is relevant

- Industrialisation's geography Storper & Walker, 1989
- Institutional variations Brenner et al., 2010
- Job behaviours, quality, functions -Akerlof, 1976; Lunardon, 2024; OECD, 2017; Rosenthal & Strange, 2008
- Workplace relations, conventions and cultures -Frenkel, 2003; Salais, 1989; Storper & Walker, 1989
- Health geography Curtis & Rees Jones, 1998

Focus on the Large Metropolitan Regions and their specific behaviours

lammarino et al., 2019; Moretti, 2012; OECD, 2017; Storper, 2018; ...

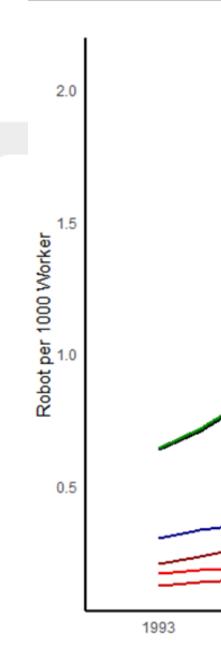

Typology

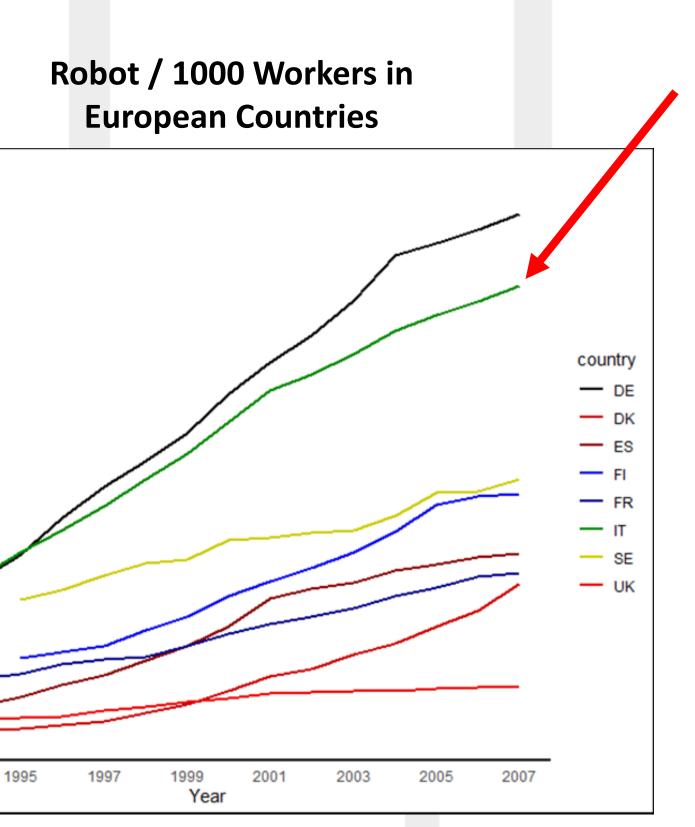


International Federation of Robotics (IFR) data

Number of industrial robots in operation per country-sector-year

Robot / 1000 Workers in European Countries


G S S I


Definition

International Federation of Robotics (IFR) data

Number of industrial robots in operation per country-sector-year

Definition

G S S I

Method - Robots

G S S I

Method - Robots

Exposure to Robots Acemoglu & Restrepo, 2020

at NUTS-3 levels ISTAT Data

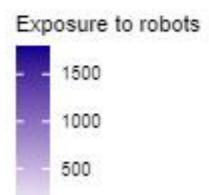
Adjusted Penetration of Robots based on sectoral distribution

Method - Robots

Exposure to Robots Acemoglu & Restrepo, 2020

at NUTS-3 levels ISTAT Data

$$Exposure \ to \ robots_{rt} = \sum_{s \in S} employment_{rs}^{1991} \left(\frac{Robot \ Stock_{st}}{Labour \ Force_{s,1991}} \right)$$

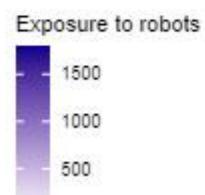

Adjusted Penetration of Robots based on sectoral distribution

S G

Exposure to Robots

Evolution of Exposure to Robots Δ 2008-2020

0

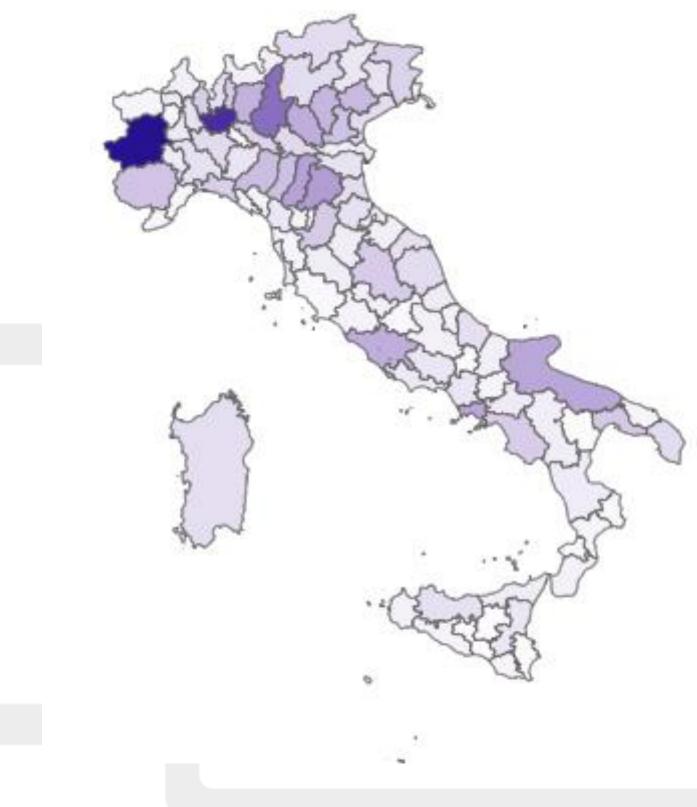

Exposure to Robots

Evolution of Exposure to Robots Δ 2008-2020

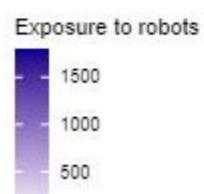
Spatial imbalances

• North of Italy

0


Exposure to Robots

Spatial imbalances


• North of Italy

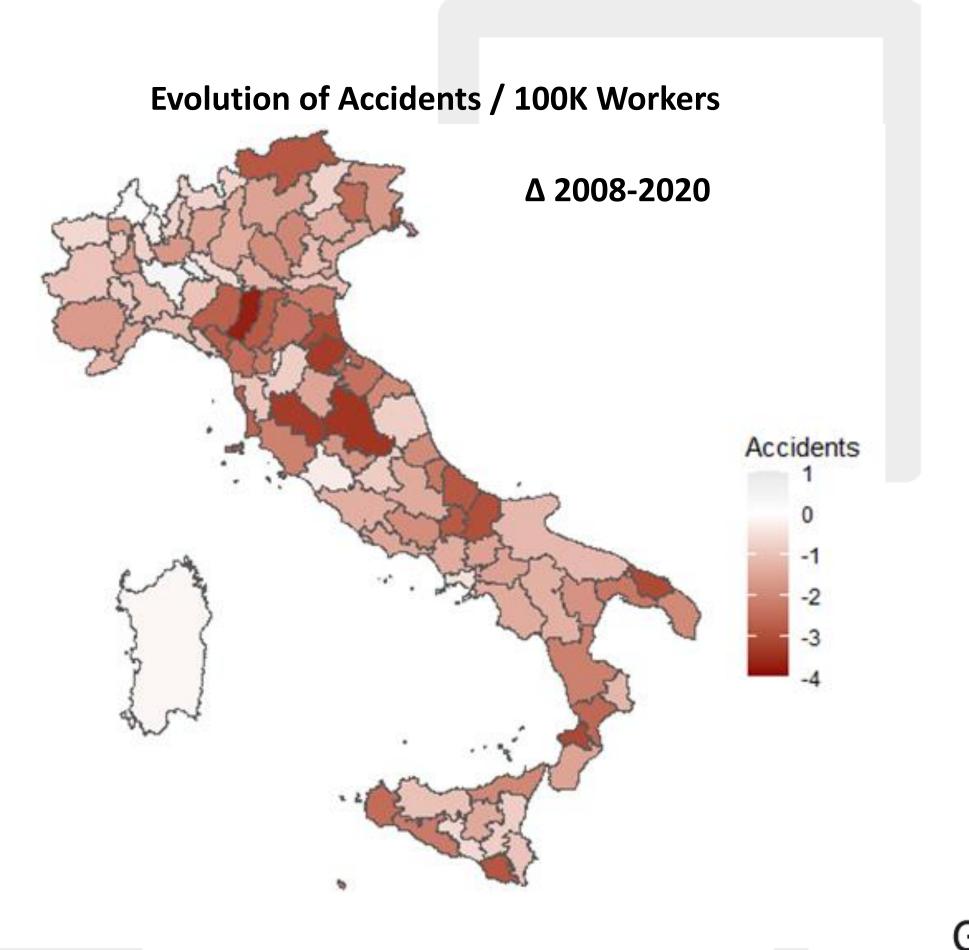
Evolution

• Differences within macro-regions

Evolution of Exposure to Robots Δ 2008-2020

Levels

0



INAIL Data

Administrative database

- Province
- Severity
- Age, Gender
- ...

Accidents / 100K Workers

G S S I

Data – Mental Health

Data – Mental Health

Deaths due to Alcohol & Drugs, Suicides

Gihleb et al., 2022; ISTAT

Data – Mental Health

Deaths due to Alcohol & Drugs, Suicides

Gihleb et al., 2022; ISTAT

Hospitalizations for mental disorders due to Alcohol & Drug abuse

ISTAT

Method – Physical Health

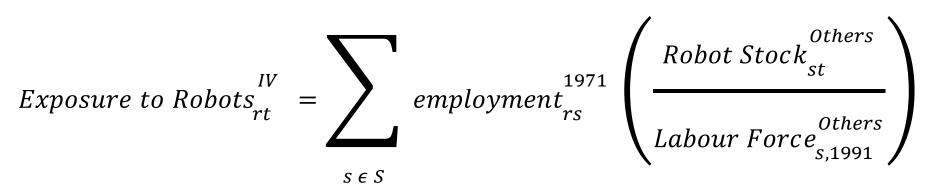
Panel Linear Model with province-year FEs

 $Y_{rt} = \alpha + \beta (Exposure \ to \ Robots)_{rt} + \tau_t + \omega_r + \varepsilon_{ert}$

Method – Physical Health (2)

Method – Physical Health (2)

Reverse causality concern due to *task* displacement



Method – Physical Health (2)

Reverse causality concern due to *task* displacement

IV: level of Robot Installations in other European economies as a proxy for improvement in the robot technology frontier

The data captures rare events, creating potential bias in the estimations through OLS

The data captures rare events, creating potential bias in the estimations through OLS

Highly skewed distributions ✓ Log and IHS transformations

The data captures rare events, creating potential bias in the estimations through OLS

Highly skewed distributions ✓ Log and IHS transformations

Transformations are not enough for mental health data ✓ Count Data approach

The data captures rare events, creating potential bias in the estimations through OLS

Highly skewed distributions ✓ Log and IHS transformations

Transformations are not enough for mental health data ✓ Count Data approach

Over dispersed data ✓ Negative Binomial standard errors

Distribution

S

Generalized Linear Model (GLM) with Negative **Binomial Standard Errors**

 $Y_{rt} = \alpha + \beta (Exposure \ to \ Robots)_{rt} + Pop_{r.t} + \varepsilon_{rt}$

Generalized Linear Model (GLM) with Negative **Binomial Standard Errors**

 $Y_{rt} = \alpha + \beta (Exposure \ to \ Robots)_{rt} + Pop_{r,t} + \varepsilon_{rt}$

 $Y_{rt} = \alpha + \beta (Exposure \ to \ Robots)_{rt} + Pop_{r,t} + \tau_t + \omega_r + \varepsilon_{rt}$

Generalized Linear Model (GLM) with Negative **Binomial Standard Errors**

 $Y_{rt} = \alpha + \beta (Exposure \ to \ Robots)_{rt} + Pop_{r,t} + \varepsilon_{rt}$

 $Y_{rt} = \alpha + \beta (Exposure \ to \ Robots)_{rt} + Pop_{r,t} + \tau_t + \omega_r + \varepsilon_{rt}$

IV with a Control Function Method

Woolridge, 2015

S

Gi

FE Issues in GLM Models

Allison & Waterman, 2002; Hilbe, 2011

Method – Mental Health

Generalized Linear Model (GLM) with Negative **Binomial Standard Errors**

$$Y_{rt} = \alpha + \beta(Exposure to)$$

 $Y_{rt} = \alpha + \beta (Exposure \ to \ Robots)_{rt} + Pop_{r,t} + \tau_t + \omega_r + \varepsilon_{rt}$

IV with a Control Function Method

Woolridge, 2015

$(Robots)_{rt} + Pop_{r,t} + \varepsilon_{rt}$

S

Results – Physical Health

Table 1: Baseline results, Effect of Exposure to Robots on V

Dependent variable: Workplace accidents				
Log-Log	IHS	Log-Log	IHS	
OLS	OLS	IV	IV	
(1)	(2)	(3)	(4)	
-0.225^{***}	-0.219^{***}	-0.743^{***}	-0.722^{***}	
(0.030)	(0.029)	(0.139)	(0.134)	
1,274	1,274	1,274	1,274	
0.045	0.047	0.045	0.047	
55.375***	57.294***	28.388***	28.938***	
	Log-Log <i>OLS</i> (1) -0.225*** (0.030) 1,274 0.045	Log-Log IHS OLS OLS (1) (2) -0.225^{***} -0.219^{***} (0.030) (0.029) 1,274 1,274 0.045 0.047	Log-LogIHSLog-Log OLS OLS IV (1)(2)(3) -0.225^{***} -0.219^{***} -0.743^{***} (0.030)(0.029)(0.139) $1,274$ $1,274$ $1,274$ 0.045 0.047 0.045	

A 1% increase in exposure to robots is associated with a 0.2/0.7% decrease in accidents per 100K workers

Around 200.000 accidents avoided over the period, or a cost to society of around EUR 10 billion (estimation based on Tompa et al., 2021)

Severity Lagged

171			4 -		
work	сpi	ace	AC	сіа	ents

Models TE are twoways (province-year)

Results – Physical Health

Table 3: Spatial Analysis w/ KIABI, Effect of Exposure to Robots on Workplace Accidents

Log-Log IV (3) $(13^{***} -0.846^{**}$ (28) (0.169) (0.122)	(0.161) * -0.211^*
(3) $(13^{***} -0.846^{**}$ $(28) (0.169)$ $(70 -0.274^{**}$	(4) ** -0.800*** (0.161) * -0.211*
$\begin{array}{rcrcr} 13^{***} & -0.846^{**} \\ 28) & (0.169) \\ 70 & -0.274^{**} \end{array}$	** -0.800^{**} (0.161) * -0.211^{*}
$\begin{array}{l} (0.169) \\ (0.274^{**}) \\ \end{array}$	(0.161) * -0.211^*
70 -0.274**	* -0.211*
(0, 1, 0, 0)	(0.126)
(0.133)	(0.120)
30*** -0.134**	** -0.132***
30) (0.037)	(0.035)
8 1,248	1,248
3 0.054	0.055
40.818***	43.038***
	8 1,248 3 0.054

G	S
S	Ι

Models FE are twoways (province-year)

Results – Mental Health

Table 2: Effect of Exposure to Robots on Mental Health Indicators, Summary

	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs	FEs	Controls
GLM	+***	+***	+***		
GLM-IV	+***	+***	+***		
GLM	NS	NS	+***	Yes	
GLM-IV	+**	+***	+***	Yes	
GLM	NS	+***	+*		Yes
GLM-IV	NS	+***	NS		Yes
GLM	NS	NS	+**	Yes	Yes
GLM-IV	NS	NS	NS	Yes	Yes
Note:		NS for 1	non-significant results; *p<0.1; *	*p<0.05;	***p<0.01

S

Results – Mental Health

	Dependent variable:				
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs		
	GLM	GLM	GLM		
	Neg. Bin.	Neg. Bin.	Neg. Bin.		
	(1)	(2)	(3)		
Exposure to Robots	0.000670***	0.000632***	0.000737***		
	(0.000082)	(0.000045)	(0.000071)		
Large Metro	0.425958**	-0.417905***	0.070995		
	(0.181401)	(0.091936)	(0.123655)		
Exposure to Robots	-0.000705***	-0.000488***	-0.000820***		
X Large Metro	(0.000086)	(0.000046)	(0.000070)		
KIABI LQ	-0.089317	-0.072618	0.524268***		
~	(0.151669)	(0.074894)	(0.110406)		

G S S I

Full Table

Results – Mental Health, IV

		Dependent variable
	Death-Alcohol/Drugs	Suicides
	GLM-IV Neg. Bin.	GLM-IV Neg. Bin.
	(1)	(2)
Exposure to Robots	0.000674***	0.000639***
	(0.000091)	(0.000054)
Large Metro	0.425694*	-0.423763^{***}
	(0.227690)	(0.121612)
Exposure to Robots	-0.000706***	-0.000486***
X Large Metro	(0.000095)	(0.000057)
KIABI LQ	-0.092634	-0.075254
	(0.163645)	(0.078259)

le:

Hospitalization-Alcohol/Drugs GLM-IV Neg. Bin. (3) 0.000737*** (0.000083) 0.071173 (0.117299) -0.000820*** (0.000072) 0.524212*** (0.143892)

Full Table

S

G

S

Results – Mental Health w/ FE

	Dependent variable:				
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs		
	GLM	GLM	GLM		
	Neg. Bin.	Neg. Bin.	Neg. Bin.		
	(1)	(2)	(3)		
Exposure to Robots	0.000576**	-0.000065	0.000404***		
	(0.000280)	(0.000092)	(0.000119)		
Large Metro	4.935980***	2.063403***	1.893171***		
	(0.824859)	(0.282307)	(0.581011)		
Exposure to Robots	-0.000682^{***}	0.000065	-0.000313^{**}		
X Large Metro	(0.000255)	(0.000086)	(0.000126)		
KIABI LQ	0.047098	-0.086905	-0.019792		
	(0.272899)	(0.081843)	(0.099131)		

G S S I

Full Table

Results – Mental Health w/ FE-IV

	Dependent variable:				
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs		
	GLM-IV Neg. Bin.	GLM-IV Neg. Bin.	GLM-IV Neg. Bin.		
	(1)	(2)	(3)		
Exposure to Robots	0.000073	0.000101	0.000232**		
	(0.000436)	(0.000069)	(0.000097)		
Large Metro	0.000003	0.0000008	0.000091		
	(3.543116)	(0.000109)	(0.206228)		
Exposure to Robots	0.000173	0.000037	-0.000040		
X Large Metro	(0.000527)	(0.000157)	(0.000206)		
KIABI LQ	-0.000054	-0.002646	-0.001688		
-	(0.259487)	(0.001667)	(0.003168)		

Full Table

Results – Mental Health

		I	Dependent variable			
Mode1	Var.	Deaths	Suicides	Hospitalisation	FEs	
	Exp. Rob.	+***	+***	+***		
GLM	X Large Metro	***	***	***		
	Exp. Rob.	+***	+***	+***		
GLM-IV	X Large Metro	***	***	***		
	Exp. Rob.	+**	NS	+***	Yes	
GLM	X Large Metro	***	NS	**		
	Exp. Rob.	NS	NS	+**	Yes	
GLM-IV	X Large Metro	NS	NS	NS		
Note:	NS for nor	-significant	results; *p<	<0.1; **p<0.05; *	**p<0.	

Table 4: Spatial Analysis, Effect of Exposure to Robots on Mental Health Indicators, Summary

S G

Results – Mental Health

A one standard deviation increase in the exposure to robots in provinces is associated with an increase of :

0.14 deaths due to alcohol and drugs 0.16 suicides 0.23 hospitalizations due to alcohol and drugs

Heterogeneous effects across space seem to be mitigated in Large Metropolitan Areas

- - Baseline Space Controls

"Some dangerous tasks disappear, but new ones are generated" Backstrom & Harms-Ringdahl, 1984; Karwowski et al., 1988, p. 218

"Some dangerous tasks disappear, but new ones are generated" Backstrom & Harms-Ringdahl, 1984; Karwowski et al., 1988, p. 218

Increased usage of robotization has improved workers'

short & medium-term physical health (proxied by accidents)

"Some dangerous tasks disappear, but new ones are generated" Backstrom & Harms-Ringdahl, 1984; Karwowski et al., 1988, p. 218

Increased usage of robotization has improved workers'

But this analysis raises concerns about the effects on populations' mental health

short & medium-term physical health (proxied by accidents)

"Some dangerous tasks disappear, but new ones are generated" Backstrom & Harms-Ringdahl, 1984; Karwowski et al., 1988, p. 218

Increased usage of robotization has improved workers'

But this analysis raises concerns about the effects on populations' mental health

Effects are different across space: large metropolitan areas appear to benefit more

short & medium-term physical health (proxied by accidents)

"Some dangerous tasks disappear, but new ones are generated" Backstrom & Harms-Ringdahl, 1984; Karwowski et al., 1988, p. 218

Increased usage of robotization has improved workers'

But this analysis raises concerns about the effects on populations' mental health

appear to benefit more

- Functional and structural differences (type of activities, HQ bias...)
- Compositional differences (individual characteristics, skills...)
- Agglomeration benefits (labour pooling and matching, exit options...)

short & medium-term physical health (proxied by accidents)

Effects are different across space: large metropolitan areas

S

Next steps

- Integrate other controls (e.g., trade intensity, temporary employment, education...)
- Identifying the drivers of the "Metropolitan effect" -

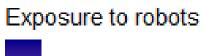
GRAN SASSO SCIENCE INSTITUTE

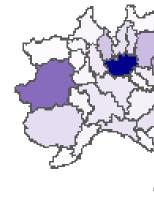
Thank you for your attention

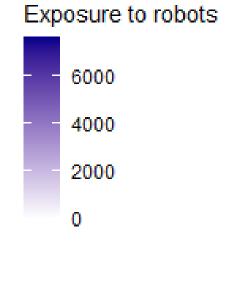
arsene.perrot@gssi.it

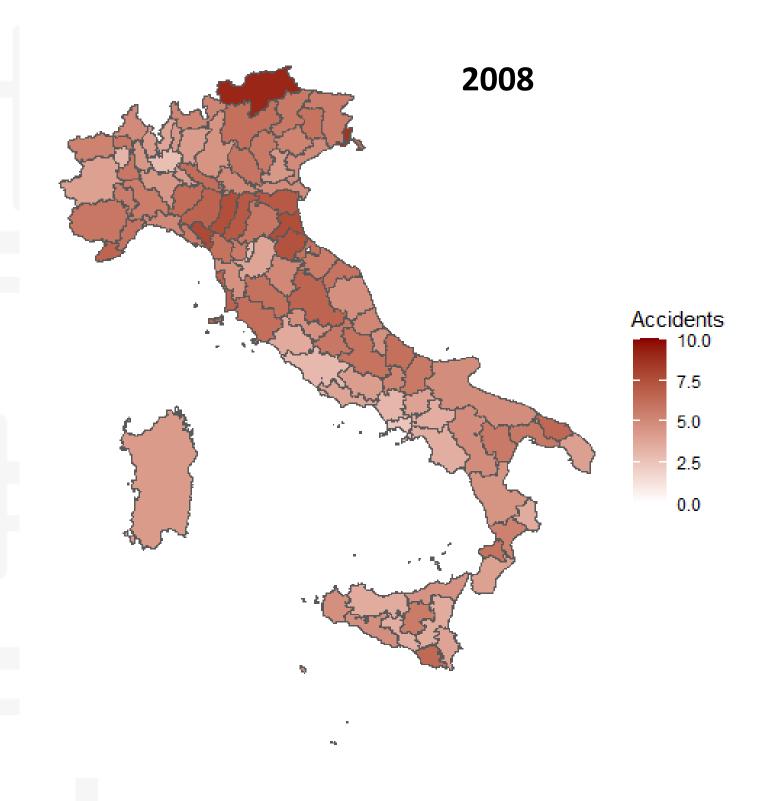
Arsène Perrot

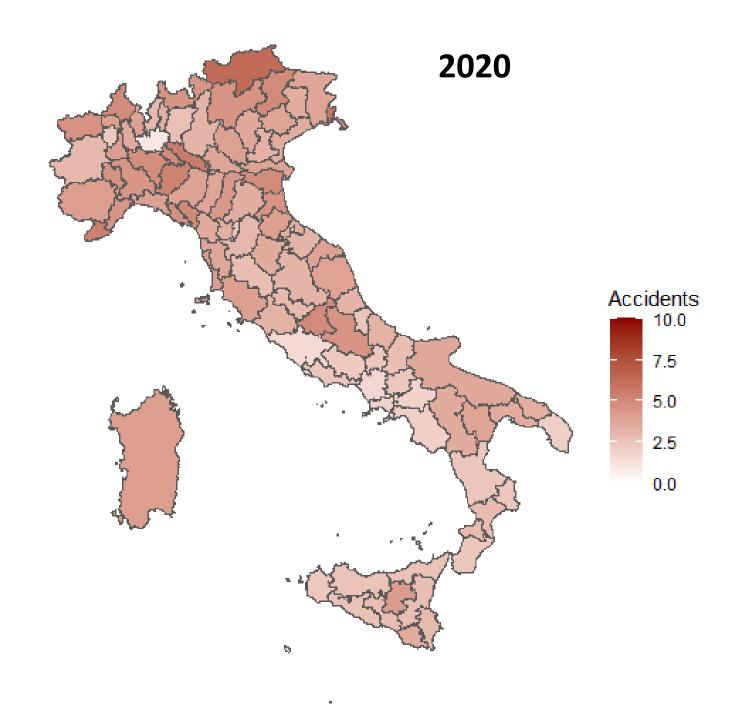
Appendix Robot


ISO Definition


An "automatically controlled, reprogrammable multipurpose manipulator, programmable in three or more axes, which can be either fixed in place or fixed to a mobile platform for use in automation applications in an industrial environment". (ISO 8373:2021)


Appendix Exposure to Robot


the second secon

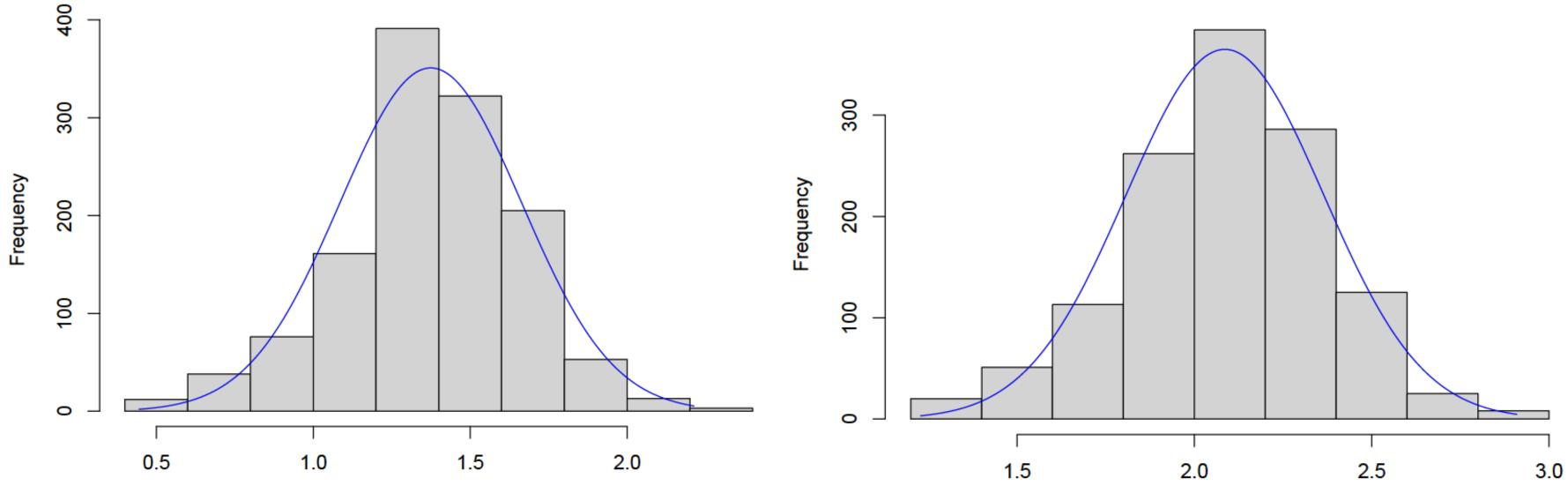


Appendix Accidents

Appendix Regional Typology

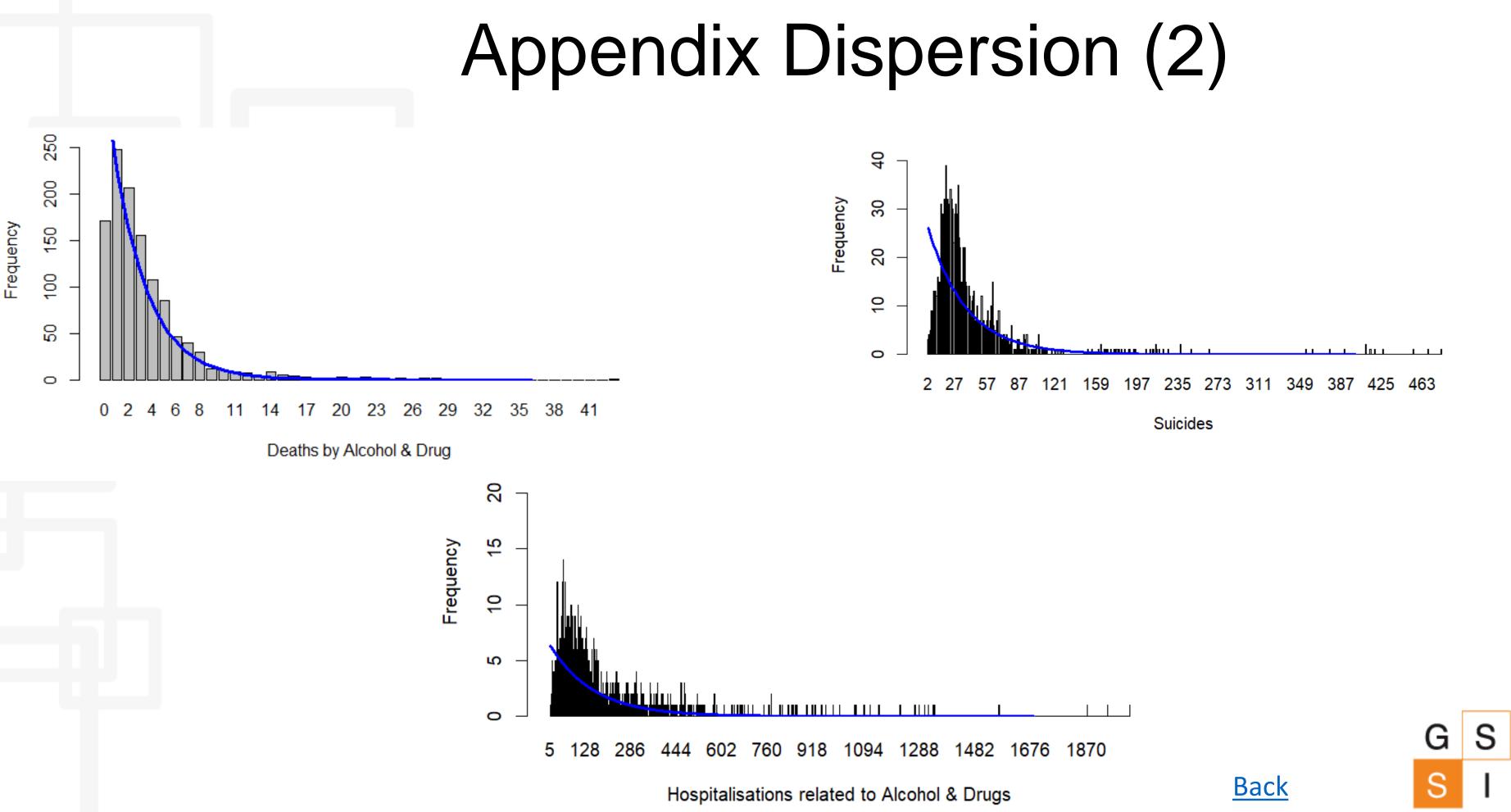
Large Metropolitan Regions

Based on regional population's access to metropolitan FUAs


Fadic et al., 2019; OECD, 2024

Appendix Dispersion

Distribution of Log of Workplace Accidents



Log of Accidents

Distribution of IHS of Workplace Accidents

IHS of Accidents

Appendix Lagged Relation

Table A3: Lagged relation results, Workplace Accidents

	Dependent variable: Workplace Accidents				
	Log-Log	IHS	Log-Log	IHS	
	OLS	OLS	IV	IV	
	(1)	(2)	(3)	(4)	
Exposure to Robots <i>t-1</i>	-0.222^{***} (0.032)	-0.217^{***} (0.030)	-0.759^{***} (0.157)	-0.734^{***} (0.151)	
Observations	1,176	1,176	1,176	1,176	
\mathbb{R}^2	0.044	0.046	0.044	0.046	
F Statistic (df = 1; 1066)	49.382***	50.995***	23.277***	23.642***	
Note:		Models' F	*p<0.1; **p<0. E are twoways (j	_	

G S S I

Back

Appendix Accident Severity (1)

Table A21: Effect of Exposure to robots on lower severity accidents

-					
	DAW	HAAW10	HAAW25	HAAW50	
	OLS	OLS	OLS	OLS	
	(1)	(2)	(3)	(4)	
Exposure to Robots	-0.218^{***} (0.030)	-0.224^{***} (0.032)	-0.165^{***} (0.027)	-0.081^{***} (0.020)	
Observations	1,274	1,274	1,274	1,274	Tab
\mathbb{R}^2	0.042	0.040	0.032	0.014 =	
F Statistic (df = 1; 1163)	51.566***	47.916***	38.406***	15.971***	

Note:

*p<0.1; **p<0.05; ***p<0.01

Models' FE are twoways (province-year)

Exposure to Robots

Observations R² F Statistic

Note:

A22: Effect of Exposure to robots on lower severity accidents IV

	Dependent variable:			
-	DAW	HAAW10	HAAW25	HAAW50
	IV	IV	IV	IV
	(1)	(2)	(3)	(4)
Robots	-0.951^{***}	-1.058^{***}	-0.651^{***}	-0.234^{***}
	(0.154)	(0.167)	(0.125)	(0.085)
	1,274	1,274	1,274	1,274
	0.042	0.040	0.032	0.014
	38.372***	40.013***	27.334***	7.466***

p<0.1; p<0.05; p<0.01

Models' FE are twoways (province-year)

Appendix Accident Severity (2)

Table A23: Effect of Exposure to robots on higher severities accidents

	Dependent variable:				
	HAAW100	HAAW100	DEATH	DEATH	
	OLS	IV	OLS	IV	
	(1)	(2)	(3)	(4)	
Exposure to Robots	-0.014 (0.012)	-0.043 (0.050)	$\begin{array}{c} 0.001 \\ (0.001) \end{array}$	-0.006 (0.006)	
Observations	1,274	1,274	1,274	1,274	
\mathbb{R}^2	0.001	0.001	0.001	0.001	
F Statistic (df = 1; 1163)	1.295	0.763	1.026	1.327	
Note:	Mod	*p<0. lels' FE are tv	1; **p<0.05;	.	

woways (province-year)

S

Back

Appendix Mental Health (1)

	Dependent variable:			
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs	
	GLM	GLM	GLM	
	Neg. Bin. (1)	Neg. Bin. (2)	Neg. Bin. (3)	
Exposure to Robots	0.000283*** (0.000049)	0.000245^{***} (0.000031)	0.000550*** (0.000056)	
Population	0.0000005^{***} (0.00000004)	0.0000007^{***} (0.00000003)	0.0000004*** (0.00000005)	
Constant	0.609907^{***} (0.033567)	$\begin{array}{c} 2.984111^{***} \\ (0.019081) \end{array}$	4.463725**** (0.029329)	
Observations Akaike Inf. Crit.	1,176 4992.52514	1,176 9510.637208	1,176 13694.595078	
Note:		0-	*p<0.1; **p<0.05; ***p<0.01	

Table A6: Baseline results for mental health, no FE

Control for population level, no FE

Appendix Mental Health (2)

	Dependent variable:			
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs	
	GLM-IV	GLM-IV	GLM-IV	
	Neg. Bin.	Neg. Bin.	Neg. Bin.	
	(1)	(2)	(3)	
Exposure to Robots	0.000283***	0.000254***	0.000577***	
	(0.000083)	(0.000060)	(0.000106)	
Population	0.0000005***	0.0000007***	0.0000004***	
_	(0.0000003)	(0.00000005)	(0.0000003)	
Predicted Residuals	-0.000014	-0.000456	-0.000988	
	(0.000610)	(0.000413)	(0.000628)	
Constant	0.609912***	2.983898***	4.461235***	
	(0.037374)	(0.026155)	(0.040379)	
Observations	1,176	1,176	1,176	
Akaike Inf. Crit.	4994.523772	9509.07983	13690.567531	

Table A7: Baseline IV estimation for mental health indicators, no FE

Appendix Mental Health (3)

	Dependent variable:				
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs		
	GLM	GLM	GLM		
	Neg. Bin.	Neg. Bin.	Neg. Bin.		
	(1)	(2)	(3)		
Exposure to Robots	-0.000069	-0.000012	0.000173***		
	(0.000105)	(0.000034)	(0.000066)		
Population	-0.000001^{***}	0.0000002	0.0000002		
	(0.0000004)	(0.0000002)	(0.0000003)		
Constant	6.245353***	4.894285^{***}	6.033427***		
	(0.945969)	(0.344181)	(0.722326)		
Observations	1,176	1,176	1,176		
Akaike Inf. Crit.	4395.240757	7686.377172	11062.587211		
Note:			*p<0.1; **p<0.05; ***p<0.01 Province-Year unconditional FE		

Table A4: Baseline results for mental health indicators

FIOVINCE- TEAL UNCONDITIONAL LE

Appendix Mental Health (4)

	Dependent variable:			
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs	
	GLM	GLM	GLM	
	Neg. Bin.	Neg. Bin.	Neg. Bin.	
	(1)	(2)	(3)	
Exposure to Robots	0.000189**	0.000226^{***}	0.000317^{***}	
	(0.000083)	(0.000032)	(0.000064)	
Population	0.0000002	0.0000002^*	0.00000009	
	(0.0000003)	(0.00000009)	(0.0000007)	
Predicted Residuals	-0.000136	-0.000653	-0.000347	
	(0.000496)	(0.000443)	(0.000508)	
Constant	1.247164	3.736717^{***}	6.112111****	
	(0.951118)	(0.135072)	(0.882)	
Observations	1,176	1,176	1,176	
Akaike Inf. Crit.	5583.022851	10827.268974	14452.795597	
Note:			*p<0.1; **p<0.05; ***p<0.01 Province-Year unconditional FE	

Table A5: Baseline IV estimation for mental health indicators

Back

Appendix Mental Controls (1)

Table A8: Control results for mental health

	Dependent variable:		
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs
	GLM Neg. Bin.	GLM Neg. Bin.	GLM Neg. Bin.
	(1)	(2)	(3)
Exposure to Robots	0.000068 (0.000048)	0.000185^{***} (0.000032)	0.000087^{*} (0.000049)
Population	0.0000007***	0.0000007***	0.0000009***
•	(0.0000005)	(0.0000003)	(0.0000005)
Unemp. Rate	-0.053108^{***}	-0.025339^{***}	-0.074259^{***}
•	(0.005148)	(0.002473)	(0.003379)
Unemp. Delta	0.002322	0.0189705***	0.037123***
-	(0.014742)	(0.007137)	(0.009318)
Constant	1.092356***	3.226970***	5.084156***
	(0.096077)	(0.029787)	(0.040997)
Observations	1,116	1,116	1,116
Akaike Inf. Crit.	4583.430708	8785.579496	12492.434753

Appendix Mental Controls (2)

Table A9: IV estimation with controls for mental health indicators

Dependent variable:		
Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs
GLM-IV Neg. Bin.	GLM-IV Neg. Bin.	GLM-IV Neg. Bin.
(1)	(2)	(3)
0.000062	0.000194***	0.000084
(0.000080)	(0.000059)	(0.000086)
0.0000007***	0.0000007***	0.0000009***
(0.00000005)	(0.0000006)	(0.0000008)
-0.053351^{***}	-0.024986^{***}	-0.074389^{***}
(0.005247)	(0.002873)	(0.004140)
0.002874	0.018721**	0.037192***
(0.013474)	(0.007293)	(0.010075)
0.000271	-0.000346	0.000103
(0.000603)	(0.000357)	(0.00001)
1.093933***	3.223909***	5.085291***
(0.063122)	(0.035585)	(0.051942)
1,116	1,116	1,116
4584.889837	8785.114312	12494.340975
	GLM-IV Neg. Bin. (1) 0.000062 (0.000080) 0.0000007*** (0.00000005) -0.053351*** (0.005247) 0.002874 (0.013474) 0.000271 (0.000603) 1.093933*** (0.063122) 1,116	Death-Alcohol/DrugsSuicides GLM -IV GLM -IVNeg. Bin. $Neg. Bin.$ (1)(2)0.0000620.000194***(0.000080)(0.000059)0.0000007***0.0000007***(0.0000005)(0.0000006)-0.053351***-0.024986***(0.005247)(0.002873)0.0028740.018721**(0.013474)(0.007293)0.000271-0.000346(0.000603)(0.000357)1.093933***3.223909***(0.063122)(0.035585)

Appendix Mental Controls (3)

Table A10: Unemployment controls for mental health indicators

	Dependent variable:				
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs		
	GLM	GLM	GLM		
	Neg. Bin.	Neg. Bin.	Neg. Bin.		
	(1)	(2)	(3)		
Exposure to Robots	-0.000106	-0.000016	0.000158**		
	(0.000106)	(0.000033)	(0.000067)		
Population	-0.000002^{***}	0.00000004	0.0000002		
	(0.0000004)	(0.0000002)	(0.000003)		
Unemp. Rate	-0.024779^{*}	-0.006705^{*}	-0.019540^{***}		
	(0.013123)	(0.003933)	(0.004310)		
Unemp. Delta	-0.003525	0.002102	0.005705		
	(0.015015)	(0.004512)	(0.004866)		
Constant	6.967862^{***}	5.250796^{***}	6.622485***		
	(1.005861)	(0.355978)	(0.742305)		
Observations	1,116	1,116	1,116		
Akaike Inf. Crit.	4138.111269	7220.083108	10448.745285		

Province-Year unconditional FE

Appendix Mental Controls (4)

Table A11: IV estimation with controls for mental health indicators

	Dependent variable:			
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs	
	GLM-IV Neg. Bin.	GLM-IV Neg. Bin.	GLM-IV Neg. Bin.	
	(1)	(2)	(3)	
Exposure to Robots	-0.000093	0.000063	0.000062	
	(0.000399)	(0.000075)	(0.000094)	
Population	-0.000002	0.0000006***	0.0000008***	
	(0.000002)	(0.000002)	(0.000002)	
Unemp. Rate	-0.024594	-0.049874^{***}	-0.074638^{***}	
-	(0.016782)	(0.012269)	(0.016083)	
Unemp. Delta	-0.003569	-0.000704	0.000243	
-	(0.018806)	(0.003171)	(0.006656)	
Predicted Residuals	-0.00003	-0.000050	0.000213	
	(0.000565)	(0.000429)	(0.000696)	
Constant	6.922034	3.689886***	5.177572***	
	(5.044010)	(0.037609)	(0.036674)	
Observations	1,116	1,116	1,116	
Akaike Inf. Crit.	4140.082805	9765.417514	13175.044434	
Note:			*p<0.1; **p<0.05; ***p<0.0	

Province-Year unconditional FE

Appendix Mental – Space (1)

		Dependent variable	:
	Death-Alcohol/Drugs	Suicides	Hospitaliza
	GLM Neg. Bin.	GLM Neg. Bin.	i
	(1)	(2)	
Exposure to Robots	0.000670***	0.000632***	
	(0.000082)	(0.000045)	
Large Metro	0.425958**	-0.417905^{***}	
2	(0.181401)	(0.091936)	
Exposure to Robots	-0.000705***	-0.000488***	
X Large Metro	(0.000086)	(0.000046)	
KIABI LQ	-0.089317	-0.072618	
_	(0.151669)	(0.074894)	
Population	0.0000007***	0.0000008***	
-	(0.0000006)	(0.0000003)	
Unemp. Rate	-0.037939***	-0.015566***	
•	(0.005448)	(0.002390)	
Unemp. Delta	0.00776	0.022527***	
•	(0.014226)	(0.006318)	
Constant	0.806884***	2.980706***	
	(0.149183)	(0.070888)	
Observations	1,116	1,116	
Akaike Inf. Crit.	4505.727976	8502.986889	123
Note:			*p<0.1; **

ation-Alcohol/Drugs GLM Neg. Bin. (3) 0.000737*** (0.000071)0.070995 (0.123655)-0.000820***(0.000070) 0.524268^{***} (0.110406)0.0000008*** (0.00000005) -0.055940^{***} (0.003463)0.035510*** (0.008615)4.272868*** (0.105691)1,116 2307.483298

No FE

Back

Appendix Mental – Space (2)

Table A15: IV Spatial analysis for mental health

		Dependent variabl	e:
	Death-Alcohol/Drugs	Suicides	Hospitalization-A
	GLM-IV	GLM-IV	GLM
	Neg. Bin.	Neg. Bin.	Neg. 1
	(1)	(2)	(3)
Exposure to Robots	0.000674***	0.000639***	0.0
	(0.000091)	(0.000054)	(0.0
Large Metro	0.425694*	-0.423763^{***}	0.
C C	(0.227690)	(0.121612)	(0.
Exposure to Robots	-0.000706***	-0.000486***	-0.
X Large Metro	(0.000095)	(0.000057)	(0.
KIABI LQ	-0.092634	-0.075254	0.
	(0.163645)	(0.078259)	<mark>(</mark> 0.
Population	0.0000007***	0.000008***	0.
	(0.0000008)	(0.0000004)	(0.
Unemp. Rate	-0.037821***	-0.015346***	-0.
-	(0.005504)	(0.002570)	(0.
Unemp. Delta	0.007613	0.022500***	0.
-	(0.013506)	(0.006878)	(0.
Predicted Residuals	-0.000137	-0.000365	0.0
	(0.000381)	(0.000276)	(0.
Constant	0.807883***	2.980933***	4.
	(0.158076)	(0.069178)	(0.
Observations	1,116	1,116	1,1
Akaike Inf. Crit.	4507.539111	8501.111231	12309.4
Note:			*p<0.1; **p<0

Alcohol/Drugs -*IV* Bin. 000737*** 000083)071173 .117299)000820*** 000072)524212*** .1438920000008*** 00000007)055947*** 004049035511*** 009532)800000 000364)272971*** 129320)16 82526

*p<0.1; **p<0.05; ***p<0.01 No FE

Appendix Mental – Space (3)

Table A12: Spatial analysis for mental health

Death-Alcohol/Drugs <i>GLM</i> <i>Neg. Bin.</i> (1) 0.000576** (0.000280) 4.935980**** (0.824859) -0.000682***	Dependent variab Suicides GLM Neg. Bin. (2) -0.000065 (0.000092) 2.063403**** (0.282307)	ile: Hospitaliza
GLM Neg. Bin. (1) 0.000576** (0.000280) 4.935980**** (0.824859)	GLM Neg. Bin. (2) -0.000065 (0.000092) 2.063403***	-
Neg. Bin. (1) 0.000576** (0.000280) 4.935980**** (0.824859)	Neg. Bin. (2) -0.000065 (0.000092) 2.063403***	i
(1) 0.000576** (0.000280) 4.935980**** (0.824859)	(2) -0.000065 (0.000092) 2.063403***	i
0.000576** (0.000280) 4.935980*** (0.824859)	-0.000065 (0.000092) 2.063403^{***}	
(0.000280) 4.935980*** (0.824859)	(0.000092) 2.063403***	
4.935980**** (0.824859)	2.063403***	
(0.824859)		
× /	(0.282307)	
-0.000682^{***}		
	0.000065	
(0.000255)	(0.000086)	
0.047098	-0.086905	
(0.272899)	(0.081843)	
-0.000001***	0.000000001	
(0.0000004)	(0.000002)	
-0.016941	-0.007609^{*}	
(0.013548)	(0.004034)	
-0.009366	0.002810	
(0.015138)	(0.004559)	
1.341398***	3.333583***	
(0.449495)	(0.141775)	
1,116	1,116	
4135.038931	7222.495086	104
	(0.013548) 0.009366 (0.015138) 1.341398**** (0.449495) 1,116	$\begin{array}{cccc} (0.013548) & (0.004034) \\ -0.009366 & 0.002810 \\ (0.015138) & (0.004559) \\ 1.341398^{***} & 3.333583^{***} \\ (0.449495) & (0.141775) \end{array}$

*p<0.1; **p<0.05; ***p<0.01 Province-Year unconditional FE

ation-Alcohol/Drugs GLM Neg. Bin. (3) 0.000404*** (0.000119)1.893171*** (0.581011) -0.000313^{**} (0.000126)-0.019792(0.099131)0.0000001(0.000003) -0.017809^{***} (0.004370)0.004411 (0.004892)4.772787*** (0.206783)1,116

0446.387776

Appendix Mental – Space (4)

Table A13: Spatial analysis for mental health with IV

	Dependent variable:		
	Death-Alcohol/Drugs	Suicides	Hospitalization-Alcohol/Drugs
	GLM-IV Neg. Bin. (1)	GLM-IV Neg. Bin. (2)	GLM-IV Neg. Bin. (3)
Exposure to Robots	0.000073	0.000101	0.000232**
	(0.000436)	(0.000069)	(0.000097)
Large Metro	0.000003	0.0000008	0.000091
	(3.543116)	(0.000109)	(0.206228)
Exposure to Robots	0.000173	0.000037	-0.000040
X Large Metro	(0.000527)	(0.000157)	(0.000206)
KIABI LQ	-0.000054	-0.002646	-0.001688
	(0.259487)	(0.001667)	(0.003168)
Population	0.0000002	0.0000005**	0.0000004
	(0.000001)	(0.000002)	(0.000003)
Unemp. Rate	-0.001000	-0.038008^{**}	-0.033414
	(0.014206)	(0.018430)	(0.026123)
Unemp. Delta	-0.000036	-0.000586	-0.000528
	(0.011997)	(0.001156)	(0.001417)
Predicted Residuals	-0.000062	-0.000012	0.000793
	(0.000655)	(0.000534)	(0.000974)
Constant	1.230165**	3.691283***	5.180854**
	(0.623757)	(0.038716)	(0.042256)
Observations	1,116	1,116	1,116
Akaike Inf. Crit.	5255.972500	9803.337470	13362.444012

S G C