Role Of Higher Education In The Era Of Automation: A Task-Based Approach

Hannah Massenbauer

University of Zurich

September 23, 2024

Motivation

- New technologies affect our work
- Impacts on inequality across individuals and countries

Distribution of RTI depending on education level

Research question

How important is higher education in the era of automation?

Definitions:

- Higher education = tertiary education¹
- Task-based approach: Analyzing the tasks executed in a job

Data:

- European Social Survey, Eurostat & O*NET
- Focus on 18 European countries (2012-2018)

¹Tertiary short-term programs, Bachelor's / Master's / Doctoral programs

Theory

Skill-biased technology change

Technologies are biased toward high-skill workers

- Acemoglu (1998)
- Acemoglu & Autor (2011)

Routine-biased technology change

Technologies are biased toward non-routine work

- Autor, Levy and Mundane (2003)
- Hardy, Keister and Lewandowski (2018)
- Spitz-Oener (2006)

Methodology I

Task-based approach:

$$T_{j,k}(i) = \frac{\text{Number of activities j in task category i}}{\text{Total number of activities performed in occupation k}} \tag{1}$$

for $i \in [1:5]$

$$T_{j,k} \in [0,1] \tag{2}$$

Routine task intensity (Mihaylov & Tijdens, 2019):

$$RTI = RM + RC - NRM - NRI - NRA^2 \tag{3}$$

²Routine manual / cognitive

⁻ Non-routine manual / interactive / abstract

Methodology II

• Individual level regressions analysis

$$RTI = \alpha + \beta \text{Heduc} + \theta X_{Individual} + \gamma X_{Country} + \epsilon$$
 (4)

• Country level regressions analysis

$$RTI = \alpha + \beta \mathsf{Heduc} \cdot \mathsf{Country} + \theta Individual + \gamma X_{Country} + \epsilon$$
 (5)

Education, gender and income matters

	(1)	(2)	(3)	(4)
Higher Education	-0.2319***	-0.2018***	-0.2052**	-0.1454**
	(0.0047)	(0.0056)	(0.0186)	(0.0176)
Age		-0.0005*	-0.0007	0.0001
		(0.0003)	(0.0005)	(0.0004)
Gender		0.1078***	0.1059**	0.1705***
		(0.0051)	(0.0150)	(0.0107)
Mother's Education		-0.0481***	-0.0479*	-0.0389**
		(0.0064)	(0.0084)	(0.0066)
Birthplace		-0.0168*	-0.0174	-0.0263
		(0.0082)	(0.0153)	(0.0146)
Income Decile		-0.0091***	-0.0098**	-0.0123**
		(0.0010)	(0.0015)	(0.0013)
Macro Controls		✓	✓	✓
Country-Year FE			✓	✓
Industry FE				✓
Constant	-0.3600***	-0.2419***	-0.6346	-0.6509*
	(0.0032)	(0.0218)	(0.2210)	(0.1923)
N	70476	59231	59231	56372

Standard errors in parentheses

 $^{^{*}}$ p < 0.05, ** p < 0.01, *** p < 0.001

Interpretation of results

- The outcome variable ranges from -1 to 1
- Tertiary education decreases the routine intensity by -0,20 $\rightarrow~10\%$ less routine tasks
- Women work in jobs with a higher routine task content Figure
- Household net income correlates negatively with routine task intensity
- Routine task intensity varies across industries Figure

The effect of education varies within EU

RTI decreases for higher educated with increasing income

- No tertiary education With tertiary education
 - Marginal returns

Divergence of RTI within EU

Discussion

- 1. Employment and wage will be affected
 - \rightarrow (Wage) Polarization
- 2. Divergence in RTI within EU-labor market challenges cohesion of EU
 - → Production- vs. service-industry
 - → Investments in (tertiary) education sector
- 3. New technologies likely to aggravate these developments as more and more tasks can be substituted
 - → complementary skills will be even more in demand

Conclusion

How important is higher education in the era of automation?

- Education reduces individual's risk of automation by 7 11%
- Especially, women can profit from higher education
- ullet Income plays a role for highly educated o glass ceiling for lower educated
- Structural differences across countries

Literature

- Acemoglu, D., & Autor, D. (2011). Skills, tasks and technologies: Implications for employment and earnings. In Handbook of labor economics (Vol. 4, pp. 1043-1171). Elsevier.
- Acemoglu, D. (1998). Why do new technologies complement skills? Directed technical change and wage inequality. The quarterly journal of economics, 113(4), 1055-1089.
- Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An
 empirical exploration. The Quarterly journal of economics, 118(4), 1279-1333.
- Hardy, W., Keister, R., & Lewandowski, P. (2018). Educational upgrading, structural change and the task composition of jobs in Europe. Economics of Transition, 26(2), 201-231.
- Mihaylov, E., & Tijdens, K. G. (2019). Measuring the routine and non-routine task content of 427 four-digit ISCO-08 occupations.
- Spitz-Oener, A. (2006). Technical change, job tasks, and rising educational demands: Looking outside the wage structure. Journal of labor economics, 24(2), 235-270.

RTI Distribution by Gender

RTI across industries

Coefficients per Country

Belgium (BE)	-0.2196***	Finland (FI)	-0.2382**
beigiuiii (BE)	(0.0140)	Fillianu (FI)	(0.0226)
Switzerland (CH)	-0.3353*	France (FR)	-0.1813**
Switzerialiu (CII)	(0.0895)	Trailce (TK)	(0.0278)
Cash Danublia (C7)	0.0805	United Kingdom (CB)	-0.2253**
Czech Republic (CZ)		United Kingdom (GB)	
(0.5)	(0.0931)		(0.0231)
Germany (DE)	-0.0929	Hungary (HU)	-0.0521
	(0.0445)		(0.1273)
Estonia (EE)	-0.1823*	Ireland (IE)	-0.2183*
	(0.0555)		(0.0381)
Spain (ES)	-0.1342	Lithuania (LT)	-0.0604
	(0.0611)		(0.0691)
Netherlands (NL)	-0.2615**	Poland (PL)	-0.2563
	(0.0328)		(0.1024)
Norway (NO)	-0.3788**	Portugal (PT)	-0.2005
	(0.0335)		(0.1084)
Sweden (SE)	-0.2493**	Slovenia (SI)	-0.1008
	(0.0388)		(0.0906)
Observations	59231	Observations	59231

Standard errors in parentheses

Back

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Marginal Effects

