The (Dis-)Equalizing **Effects of Production Networks**

Leonhard Ipsen^{1,2} Jan Schulz¹

- ¹ Department of Economics, Otto-Friedrich-Universität Bamberg
- ² Bamberg Research Training Group on Bounded Rationality, Heterogeneity and Network Effects
 - funded by

Hans **Böckler** Stiftung

Poor Households and the Weight of Inflation

Jan Schulz¹

Leonhard Ipsen^{1,2}

- ¹ Department of Economics, Otto-Friedrich-Universität Bamberg
- ² Bamberg Research Training Group on Bounded Rationality, Heterogeneity and Network Effects
 - funded by

Hans **Böckler** Stiftung

Who is most exposed to inflation?

- The wealthy?
- The poor?
- The low-incomes?
- The non-professors?

Poor Households and the Weight of Inflation J.

J. Schulz L. Ipsen Otto-Friedrich-Universität Bamberg

Income-dependent Inflation Inequality

- Inconclusive: magnitude and direction 2005; Strasser et al., 2023)
- Inconclusive: higher inflation rates = higher inflation inequality? (Claeys and Guetta-Jeanrenaud, 2022; Crawford and Oldfield, 2002; Hobijn and Lagakos, 2005)
- Low persistency (Hobijn and Lagakos, 2005; Strasser et al., 2023)
- Meanwhile: poorer HH consistently indicate to be most exposed (Easterly and Fischer, 2001; Stantcheva, 2024)

(Claeys and Guetta-Jeanrenaud, 2022; Crawford and Oldfield, 2002; Garcimartín et al. 2021; Hobijn and Lagakos,

J. Schulz Otto-Friedrich-Universität Bamberg L. Ipsen

4

How can we explain this inflation-inequality puzzle?

Poor Households and the Weight of Inflation J. Schulz L. Ipsen Otto-Friedrich-Universität Bamberg

I. The Role of Sectoral **Asymmetries for Inflation** Inequality

The (Dis-) Equalizing Effects of **Production Networks**

J. Schulz Poor Households and the Weight of Inflation Otto-Friedrich-Universität Bamberg L. Ipsen

Sectors

0.000

0.002

0.004 Average Mean Effect of Each Sector (%)

'Systemically Significant Prices' (Weber et al. 2024)

Figure from Schulz and Ipsen (2024): Average mean inflation effect of sectors following an average price shock in percentage points.

World Input Output Database (WIOD)

 Sector level data for 43 countries with 56 sectors each (2000 - 2014; > 85% GDP)

Classification of individual consumption by purpose (COICOP)

- Eurostat: 21 EU countries, 5 quintiles each (2020)
- Merged with WIOD data (Cai and Vandyck, 2020)

Average income for each quintile

Eurostat: 21 EU countries (2020)

Approach: Leontief Price Model

Each sector is exposed to its average input price shock between 2000 - 2014.

Shocks propagate downstream and linearly

Sector level consumption shares of 5 income groups in 21 EU countries

Consumption shares are heterogenous for countries and income quintiles. Thus exposure to individual sectors is asymmetric!

Regression

$log(E)_{i,c,q} = \beta_{0,i} + \beta_{1,i} log(Y_{c,q}) + \delta_{c} + \epsilon_{i,c,q}$

- Elasticity estimates for direct, indirect and total effect of sector class j
- $Y_{c,a}$ is average absolute income of quintile q in country c
- δ_c is a country dummy variable for Fixed Effects
- $\epsilon_{i,c,q}$ is an error term

The (Dis-) Equalizing **Effects of** Production Networks

Working Paper Ipsen & Schulz 2024

Sector

Sectors

0.010

Average Mean Effect of Each Sector (%)

Sector

erval	
ct Network	Effect
.5	0.6

I. The Role of Sectoral **Asymmetries for Inflation** Inequality

The (Dis-) Equalizing Effects of **Production Networks**

J. Schulz Otto-Friedrich-Universität Bamberg Poor Households and the Weight of Inflation L. Ipsen

II. Income-weighted Price Shock Effects

Poor Households and the Weight of Inflation

J. Schulz Poor Households and the Weight of Inflation Otto-Friedrich-Universität Bamberg L. Ipsen

The Weight of Inflation

$$U(\gamma; Y, \alpha, p) = \left(\gamma \cdot \frac{Y}{p}\right)^{\alpha} \cdot \left((1 + 1)^{\alpha}\right)^{\alpha} + \left(\gamma \cdot \frac{Y}{p}\right)^{\alpha} \cdot \left((1 + 1)^{\alpha}\right)^{\alpha} + \left(\gamma \cdot \frac{Y}{p}\right)^{\alpha} + \left(\gamma$$

$$\frac{\partial U}{\partial \gamma} \stackrel{!}{=} 0 \Rightarrow \gamma^* = \alpha$$
(...)
$$-\frac{\Delta u^*}{u} = \alpha \cdot \Delta p \quad \text{or} \quad -\frac{\Delta u^*}{u}$$

Poor Households and the Weight of Inflation

Y = available current income

p = price level

 γ = average propensity to consume

 α = weight on current consumption

Introducing Average Propensity to Consume

 $Expenditure Weights \times APC = \left(\frac{Expenditure_i}{Total Expenditures}\right) \times \left(\frac{Total Expenditures}{Income}\right) = \frac{Expenditure_i}{Income}$

GEO	Q1 (%)	Q2 (%)	Q3 (%)	Q4 (%)	Q5 (%)
Austria	129.8	97.9	85	75.9	59
Belgium	118.9	92.1	74	63.3	50
Bulgaria	113.9	89.6	75	62.2	44.1
Croatia	121	107.7	88.4	80	63
Cyprus	89.3	87	86.5	83	65.2
Denmark	118	85.6	74.8	62.3	47
Estonia	108.3	81.9	70	54	45.3
France	114	84.9	78.7	72	55
Germany	143	91.6	84	77.5	63.4
Greece	168	110.4	101.5	88.6	72
Hungary	113.4	94.8	83.3	74.8	66.2
Latvia	114	88.7	78	72.4	56.9
Lithuania	110.7	82.1	69.5	51.8	39.4
Luxembourg	112.9	86.8	80	63.8	52.8
Malta	136.2	94.6	87.6	74.4	53.9
Netherlands	148.2	104.3	83.6	68	52.9
Poland	104.1	60.6	54	47.2	38.8
Romania	195	126.6	104.1	86	66
Slovakia	103	89.2	79.6	71.3	55
Slovenia	117	95.7	87	78.2	64
Spain	129	90.6	76	65.8	51

Poor Households and the Weight of Inflation

J. Schulz

L. Ipsen

Otto-Friedrich-Universität Bamberg

15

Incomeweighted Price Shock Effects

& The Role of Sectoral Asymmetries for Inflation Inequality

Take Aways

- Sectoral asymmetries in the global production network matter for inflation inequality
- Direction, magnitude & persistence of inflation inequality likely dependent on sector of origin
- Focus on expenditure weights might mask substantial source of inflation inequality
- Income-weighting price shock effects could explain why poorer households consistently feel most exposed to inflation

References

Cai, M., & Vandyck, T. (2020). Bridging between economy-wide activity and household-level consumption data: Matrices for European countries. *Data in Brief*, 30, 105395. Claeys, G., & Guetta-Jeanrenaud, L. (2022). Who is suffering most from rising inflation? *Bruegel-Blogs*, NA-NA. Crawford, I., & Oldfield, Z. (2002). Distributional aspects of inflation. Comment. 90, Inst. Fisc. Stud., London. Easterly, W., & Fischer, S. (2001). Inflation and the Poor. Journal of money, credit and banking, 160-178. Garcimartín, C., Astudillo, J., & Martínez, A. (2021). Inflation and income distribution in Central america, Mexico, Panama, and the Dominican Republic. *Review of Development Economics*, 25(1), 315-339. Hobijn, B., & Lagakos, D. (2005). Inflation inequality in the United States. Review of income and Wealth, 51(4), 581-606. Stantcheva, S. (2024). Why do we dislike inflation? (No. w32300). National Bureau of Economic Research. Strasser, G., Messner, T., Rumler, F., & Ampudia, M. (2023). Inflation heterogeneity at the household level. ECB Occasional Paper, (2023/325). Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & De Vries, G. J. (2015). An illustrated user guide to the world input-output database: the case of global automotive production. Review of International Economics, 23(3), 575-

605.

Weber, I., & Lara, J., & Teixeira, L., & Nassif Pires, L. (2024). Inflation in times of overlapping emergencies: Systemically significant prices from an input-output perspective. Industrial and Corporate Change. 33(2), 297-341

Utility Maximization under (Bounded) Rationality

$$U(\gamma; Y, \alpha, p) = \left(\gamma \cdot \frac{Y}{p}\right)^{\alpha} \cdot ((1 - \gamma)Y)^{1 - \alpha}$$

By the FOC, the optimal propensity to consume γ^* is given by,

$$\frac{\partial U}{\partial \gamma} \stackrel{!}{=} 0 \Rightarrow \gamma^* = \alpha$$

Optimizing gives the utility function for γ^*

$$U^*(Y,\alpha,p) = \left(\alpha \frac{Y}{p}\right)^{\alpha} \cdot ((1-\alpha)Y)^{1-\alpha}.$$

Taking the logarithmic derivative and approximating by the discrete growth rate in utility over the discrete growth rate in the price level yields

$$\frac{d \log U^*}{d \log p} = -\frac{\alpha}{p} \approx \frac{\Delta u^*/u^*}{\Delta p/p}.$$

Normalizing initial price level to unity, the marginal growth rate of utility in response to a price shock Δp as

$$\frac{\Delta u^*/u}{\Delta p} = -\alpha \Leftrightarrow -\frac{\Delta u^*}{u} = \alpha \cdot \Delta p.$$

$$U(\gamma; Y, \alpha, p) = \left(\gamma \cdot \frac{Y}{p}\right)^{\alpha} \cdot \left((1-\gamma)\frac{Y}{p}\right)^{1-\alpha}$$

$$\frac{\partial U}{\partial \gamma} \stackrel{!}{=} 0 \Rightarrow \gamma^* = \alpha$$

$$U^*(Y,\alpha,p) = \left(\alpha \frac{Y}{p}\right)^{\alpha} \cdot \left((1-\alpha) \frac{Y}{p}\right)^{1-\alpha}.$$

$$\frac{d \log U^*}{d \log p} = -\frac{1}{p} \approx \frac{\Delta u^*/u^*}{\Delta p/p}.$$

$$\frac{\Delta u^*/u}{\Delta p} = -1 \Leftrightarrow -\frac{\Delta u^*}{u} = \Delta p.$$

Total Effect

Direct Effect

Indirect Effect

Sectoral Asymmetries & Inflation Inequality

Input price shock

Poor Households and the Weight of Inflation

J. Schulz Otto-Friedrich-Universität Bamberg L. Ipsen

25

Limitations

- no substitution effects
 - in the network (1:1 supported by Duprez and Magerman, 2018)
 - in products
 - in consumption shares
- Sector level data
- no wealth and debt effect

J. Schulz Otto-Friedrich-Universität Bamberg L. Ipsen

Inequality reducing effect

Poor Households and the Weight of Inflation

Effect

direct ^{LI}	$= 0.1 \times 0.2 = 0.02$
indirect ^{LI}	$= 0.1 \times 0 \times 0.8 = 0$
total ^{LI}	= 0.02 + 0 = 0.02
direct ^{HI}	$= 0.1 \times 0.2 = 0.02$
ndirect ^{HI}	$= 0.1 \times 0.5 \times 0.8 = 0.04$
total ^{HI}	= 0.02 + 0.04 = 0.06

 $total^{LI} < total^{HI}$

Inequality enhancing effect

Poor Households and the Weight of Inflation

Effect

direct ^{LI}	$= 0.1 \times 0.2 = 0.02$
indirect ^{LI}	$= 0.1 \times 0.5 \times 0.8 = 0.04$
total ^{LI}	= 0.02 + 0.04 = 0.06
direct ^{HI}	$= 0.1 \times 0.2 = 0.02$
indirect ^{HI}	$= 0.1 \times 0 \times 0.8 = 0$
total ^{HI}	= 0.02 + 0 = 0.02

 $total^{LI} > total^{HI}$

Country-level Analysis: Slovenia and Denmark

Exposure Maps

Share of total inflation exposure by country for Slovenia (right) and Denmark (left)

Country-level Analysis: Russia's Energy

- 0.30	
- 0.25	
- 0.20	
- 0.15	
- 0.10	
- 0.05	

Share of Russian energy sectors in total imported inflation exposure by country

Take Aways

- **Production networks matter for inflation:** Systemically Significant Prices
- Production networks matter for inflation inequality
 - Inequality Enhancing Prices: identify all relevant sectors by focusing only on consumption share differences.
 - Significant overlap of SSP and IEP
 - **Mostly homogenizing effect** however important exception!
- APC dominant factor for realized inflation inequality: Every price shock becomes an IEP when considering APC

We find one relevant channel for inflation inequality. We can identify the sectors to which a price shock is inequality enhancing. One would fail to

Next Steps / Projects

- Social welfare bias? Food stamps etc.
- Income dependent exposure to Russia?
- How large are the international differences in income dependent exposure?
- Monetary Policy, Production Networks and Inequality (Dix, Schulz, Ipsen)
 ¹ Department of Economics, Otto-Friedrich-University of Bamberg
- Propagation Mechanism of Inflation Shocks in Production Networks (Schulz, Rochowicz, Ipsen)

Working Paper

Ipsen^{1,2}, Aminian^{1,2} & Schulz¹ (2023)

² Bamberg Research Training Group on Bounded Rationality,

Heterogeneity and Network Effects

References

- Adam, K., & Zhu, J. (2016). Price-level changes and the redistribution of nominal wealth across the Euro Area. Journal of the European Economic Association, 14(4), 871–906.
- Bobasu, P. A., di Nino, V., & Osbat, C. (n.d.). The impact of the recent inflation surge across households.
- Cai, M., & Vandyck, T. (2020). Bridging between economy-wide activity and household-level consumption data: Matrices for European countries. *Data in Brief*, 30, 105395. <u>https://doi.org/10.1016/j.dib.2020.105395</u>
- Dullien, S., & Tober, S. (n.d.). IMK Policy Brief Nr. 123, Mai 2022.
- Hobijn, B., & Lagakos, D. (2005). Inflation Inequality in the United States. Review of Income and Wealth, 51(4), 581-606. https://doi.org/10.1111/j.1475-4991.2005.00170.x
- Ipsen, L., Aminian, A., & Schulz, J. (2023). Stress-testing Inflation Exposure: Systemically Significant Prices and Asymmetric Shock Propagation in the EU28. BERG Working Paper Series, 188.
- Jaravel, X. (2019). The Unequal Gains from Product Innovations: Evidence from the U.S. Retail Sector*. The Quarterly Journal of Economics, 134(2), 715–783. https://doi.org/10.1093/qje/qjy031
- Jaravel, X. (2021). Inflation Inequality: Measurement, Causes, and Policy Implications. Annual Review of Economics, 13(1), 599– 629. https://doi.org/10.1146/annurev-economics-091520-082042
- Kaplan, G., & Schulhofer-Wohl, S. (2017). Inflation at the household level. Journal of Monetary Economics, 91, 19–38. https://doi.org/10.1016/j.jmoneco.2017.08.002
- Oldfield, Z., & Crawford, I. (2002). *Distributional aspects of inflation*. <u>https://doi.org/10.1920/co.ifs.2002.0090</u>
- Pallotti, F., Paz-Pardo, G., Slacalek, J., Tristani, O., & Violante, G. (2023). Who Bears the Costs of Inflation? Euro Area Households and the 2021–2022 Shock (w31896; p. w31896). National Bureau of Economic Research. https://doi.org/10.3386/w31896

Poor Households and the Weight of Inflation

Neutral effect

Poor Households and the Weight of Inflation

on Shares	Effect
= [0.2] 0.8 0]	$direct^{LI} = 0.1 \times 0.2 = 0.02$ indirect^{LI} = 0.1 \times 0.5 \times 0.8 = 0.04 total^{LI} = 0.02 + 0.04 = 0.06
$\begin{bmatrix} 0.2 \\ 0 \\ 0.8 \end{bmatrix}$	$direct^{HI} = 0.1 \times 0.2 = 0.02$ indirect^{HI} = 0.1 \times 0.5 \times 0.8 = 0.04 total^{HI} = 0.02 + 0.04 = 0.06

 $total^{LI} = total^{HI}$

Causal Flow: Realized Inflation Inequality

Input price shock

Poor Households and the Weight of Inflation

J. Schulz Otto-Friedrich-Universität Bamberg L. Ipsen

35

Leontief Price Model

$P_i = a_{1i}P_1 + \ldots + a_{ii}P_i + \ldots + a_{ni}P_n + V_i$

 $P_i = Price \ of \ sector_i \ output$

 $V_i = Value Added of sector_i$

Value of output from $sector_i$ to $sector_j$ $a_{ij} =$ Value of sector_io utput

Stress-Testing Inflation Exposure

L. Ipsen

J. Schulz

Leontief Price Model

For *n* sectors

$$\begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix} = \begin{bmatrix} a_{11}a_{21} \\ a_{12}a_{22} \\ \vdots \\ a_{1n}a_{2n} \end{bmatrix}$$

Simulate downstream shocks: need inverse of A

 $P \equiv$

Singling out sector that experiences shock splits this into

$$\begin{bmatrix} P_X \\ P_E \end{bmatrix} = \begin{bmatrix} A'_{XX}A'_{EX} \\ A'_{XE}A'_{EE} \end{bmatrix} \begin{bmatrix} P_X \\ P_E \end{bmatrix} + \begin{bmatrix} v_X \\ v_E \end{bmatrix}$$

with P_X as the price vector of the shocked sector and P_E as the price vectors of the remaining endogenous sectors.

Stress-Testing Inflation Exposure

L. Ipsen

$$\begin{array}{c} \cdots a_{n1} \\ \cdots a_{n2} \\ \cdots & \vdots \\ \cdots & a_{nn} \end{array} \begin{array}{c} P_1 \\ P_2 \\ \vdots \\ P_n \end{array} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

$$A'P+v$$
.

Derivation Price Model Following Weber et al. 2022

$$\begin{bmatrix} P_X \\ P_E \end{bmatrix} = \begin{bmatrix} A'_{XX} \\ A'_{XE} \end{bmatrix}$$

- endogenous industries (columns).
- the ex. industries (columns).
- industries (rows)

$\begin{array}{c|c} A'_{EX} & P_X \\ A'_{EE} & P_E \end{array} + \begin{array}{c} v_X \\ v_E \end{array}$

• A'_{XX} is an $X \times X$ matrix, containing the direct input requirements of ex. industries from ex. industries. • A'_{EX} is an $x \times e$ matrix, containing the direct input requirements of the ex. industries (rows) from the

• A'_{XE} is an $e \times x$ matrix, containing the direct input requirements of the end. industries (rows) from

• A'_{EE} is an $e \times e$ matrix containing the direct input requirements of end. industries (rows) from end.

Leontief Price Model

Since P_X is determined by the exogenous shock, we are only interested in

$$P_E = A'_{XE}P_X + A'_{EE}P_E + v_E.$$

 $A'_{XE}P_X$ captures how the prices in the endogenous sectors depend on the price of the exogenous sector. $A'_{EE}P_E$ captures how the prices in the endogenous sectors depend on each other. If we solve for P_E , we get

$$P_E = (I - A'_{EE})^{-1} A'_{XE} P_X + (I - A'_{EE})^{-1} v_E.$$

the price change in the remaining sectors, ΔP_E , is given by

$$\Delta P_E = (I - A'_{EE})^{-1} A'_{XE} \Delta P_X.$$

Stress-Testing Inflation Exposure

L. Ipsen

Assuming no substitution, the quantity of inputs remains unchanged following a change in prices. Thus, following a change in prices in the exogenous sector ΔP_X ,

Leontief Price Model

At this point we introduce the expenditure shares $Es_{x,q,i}$, which is the expenditure share of quintile_q in country_i in the exogeneous sector_x. $Es_{b,q,i}$ gives the expenditure share of quintile_q in country_i in the endogeneous sector_b

The direct, indirect and total effect is then given by

$$\Delta \pi_{Q,I}^{direct} = E s_{x,q,i} \Delta P_X$$

$$\Delta \pi_{Q,I}^{indirect} = \sum_{b \neq x} E s_{b,q,i} \, \Delta P_E^b.$$

$$\Delta \pi_{Q,I}^{total} = E s_{x,q,i} \Delta P_X + \sum_{b \neq x} E s_{b,q,i} \Delta P_E^b.$$

Stress-Testing Inflation Exposure

L. Ipsen

Stress-Test Scenario

Mean of yearly logarithmic price changes

 $\Delta P_X = \frac{1}{T}$

inserting price shocks into price formation process gives

$$P_E = (I - A'_{EE})^{-1} A'_{XE} \Delta P_X$$

with σ_E =volatility in endogenous sectors induced by σ_X

Stress-Testing Inflation Exposure

$$= \Delta % P_X^t$$