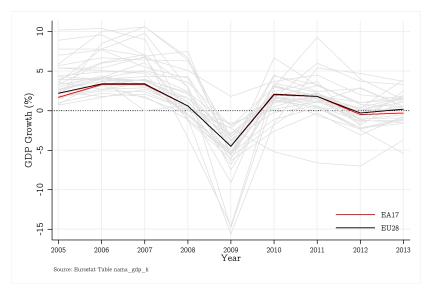
Model 000000000000 Policy simulations

Conclusions 00000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Growth, Distributions, and the Environment: A Modeling Framework for Policy Analysis

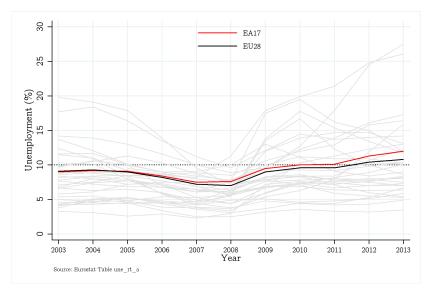
Asjad Naqvi, Ph.D.


Post-doc, Institute for Ecological Economics, Department of Socioeconomics

AK Future of Capitalism Conference, 25 Sept 2014

Introduction Model Policy simulations •000000000000000

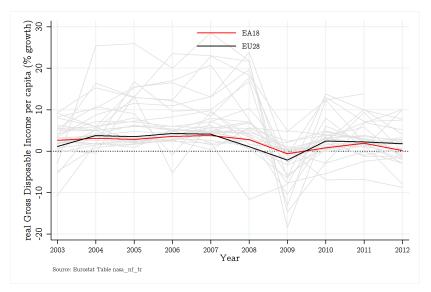
Challenge 1: GDP growth falling


・ロト ・個ト ・モト ・モト æ

Conclusions

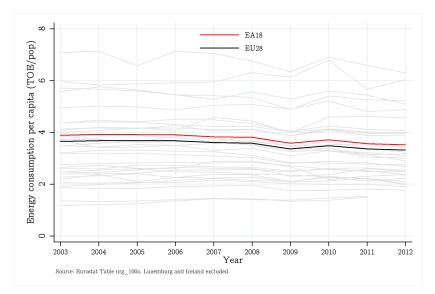
Model 000000000000000 Policy simulations

Conclusions


Challenge 2: Unemployment rising

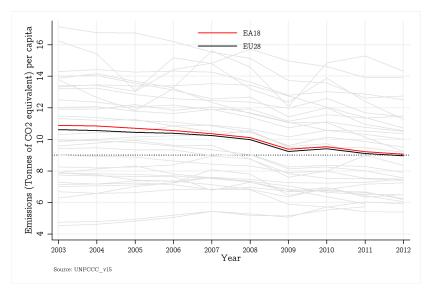
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Conclusions


Challenge 3: Real disposable incomes falling

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Conclusions

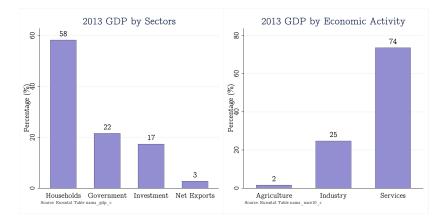

Challenge 5: Energy consumption stagnant

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Conclusions

Challenge 6: Some emissions targets missing

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?


Introduction
000000000000000000000000000000000000000

Model

Policy simulations

Conclusions 00000

GDP composition

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Model 000000000000000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Growth vs Environment

EU is a closed economy

- ▶ 90% of demand is internal
- Increase in real incomes can boost demand, lead to growth, employment
- ► BUT
- Higher growth can result in higher output and subsequently higher emissions
- Several proposed solutions

Model 000000000000 Policy simulations

Conclusions 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Growth vs Environment

- EU is a closed economy
 - ▶ 90% of demand is internal
- Increase in real incomes can boost demand, lead to growth, employment
- ▶ BUT
- Higher growth can result in higher output and subsequently higher emissions
- Several proposed solutions

Model 0000000000000 Policy simulations

Conclusions 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Growth vs Environment

- EU is a closed economy
 - 90% of demand is internal
- Increase in real incomes can boost demand, lead to growth, employment

BUT

- Higher growth can result in higher output and subsequently higher emissions
- Several proposed solutions

Model 000000000000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Growth vs Environment

- EU is a closed economy
 - ▶ 90% of demand is internal
- Increase in real incomes can boost demand, lead to growth, employment
- BUT
- Higher growth can result in higher output and subsequently higher emissions
- Several proposed solutions

Model 0000000000000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Growth vs Environment

- EU is a closed economy
 - ▶ 90% of demand is internal
- Increase in real incomes can boost demand, lead to growth, employment
- BUT
- Higher growth can result in higher output and subsequently higher emissions
- Several proposed solutions

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Some proposed solutions

Keep growth very low or even zero

- Through reduction in demand (who reduces?)
- High investment in innovation technologies
 - Absolute decoupling (who invests?)
- Emissions regulation through climate taxes (tax whom?)
- Carbon pricing (how do you price?)
- Redistribution?

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Keep growth very low or even zero
 - Through reduction in demand (who reduces?)
- High investment in innovation technologies
 - Absolute decoupling (who invests?)
- Emissions regulation through climate taxes (tax whom?)
- Carbon pricing (how do you price?)
- Redistribution?

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Keep growth very low or even zero
 - Through reduction in demand (who reduces?)
- High investment in innovation technologies
 - Absolute decoupling (who invests?)
- Emissions regulation through climate taxes (tax whom?)
- Carbon pricing (how do you price?)
- Redistribution?

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Keep growth very low or even zero
 - Through reduction in demand (who reduces?)
- High investment in innovation technologies
 - Absolute decoupling (who invests?)
- Emissions regulation through climate taxes (tax whom?)
- Carbon pricing (how do you price?)
- Redistribution?

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Keep growth very low or even zero
 - Through reduction in demand (who reduces?)
- High investment in innovation technologies
 - Absolute decoupling (who invests?)
- Emissions regulation through climate taxes (tax whom?)
- Carbon pricing (how do you price?)
- Redistribution?

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The Policy Challenge

Regardless of policy decision, solutions are not trivial

The economy is complex with multiple integrated sectors

- HH, firms, financial, government
- Policy response in one sector might feedback a negative response in another
- Need to have a framework that tracks policy response across all sectors of the economy
 - Social Accounting Matrices (SAMs) (Taylor 2004)
 - Stock-flow consistent models (SFCs) (Godley and Lavoie 2007)

Policy simulations

Conclusions 00000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Policy Challenge

- Regardless of policy decision, solutions are not trivial
- The economy is complex with multiple integrated sectors
 - ► HH, firms, financial, government
 - Policy response in one sector might feedback a negative response in another
- Need to have a framework that tracks policy response across all sectors of the economy
 - Social Accounting Matrices (SAMs) (Taylor 2004)
 - Stock-flow consistent models (SFCs) (Godley and Lavoie 2007)

Policy simulations

Conclusions 00000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Policy Challenge

- Regardless of policy decision, solutions are not trivial
- The economy is complex with multiple integrated sectors
 - ► HH, firms, financial, government
 - Policy response in one sector might feedback a negative response in another
- Need to have a framework that tracks policy response across all sectors of the economy
 - Social Accounting Matrices (SAMs) (Taylor 2004)
 - Stock-flow consistent models (SFCs) (Godley and Lavoie 2007)

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

National Accounts

Economic activity is captured in monetary terms in two primary accounts

- ▶ **Balance sheets**: Net worth (asset, liabilities) → Stocks
- Flow of funds: sources and uses of funds \rightarrow Flows
- Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

National Accounts

- Economic activity is captured in monetary terms in two primary accounts
 - ▶ **Balance sheets**: Net worth (asset, liabilities) → Stocks
 - Flow of funds: sources and uses of funds \rightarrow Flows
 - Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

National Accounts

- Economic activity is captured in monetary terms in two primary accounts
 - ▶ **Balance sheets**: Net worth (asset, liabilities) → Stocks
 - Flow of funds: sources and uses of funds \rightarrow Flows
 - Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

National Accounts

- Economic activity is captured in monetary terms in two primary accounts
 - ▶ **Balance sheets**: Net worth (asset, liabilities) → Stocks
 - Flow of funds: sources and uses of funds \rightarrow Flows
 - Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions 00000

Euro region Household Sector

Table: Household Balance Sheet (EUR Billions)

Category	Balance	2012-Q4	2013-Q4	%	Δ	
Non financial assets	Non-financial assets	29,625	29,041	68%	-584	
	Housing wealth	28,055	27,435	64%	-620	
Financia assets	Currency and deposits	7,046	7,225	17%	179	
	Securities and derivatives	1,537	1,365	4%	-172	
	Loans	-6,196	-6,152	14%	44	
	Shares and equities	4,310	4,858	11%	543	
	Insurance and pension	5,939	6,184	14%	-245	
	Other	195	169		-26	
	Net worth	42,456	42,685		229	
Source ECB Monthly Bulletin May 2014						

Source: ECB Monthly Bulletin May 2014

Policy simulations

Conclusions 00000

Euro region Household Sector

Table: Household Flow of funds (EUR Billions)

Flows	2013-Q4
Total income (all sources)	7,059
Net social contributions receivable	182
Тах	-962
Gross disposable income	6,279
Consumption	-5,507
Gross savings	829
Consumption of fixed capital	-407
Net capital transfers	-4
Change in worth of stocks	-189
Net savings (Δ net worth)	229
Source: ECB Monthly Bulletin May	/ 2014

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Policy simulations

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

National Accounts

- Economic activity is captured in monetary terms in two primary accounts
- ▶ Balance sheets: Net worth (asset, liabilities) → Stocks
- Flow of funds: sources and uses of funds \rightarrow Flows
- Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

National Accounts

- Economic activity is captured in monetary terms in two primary accounts
- ▶ Balance sheets: Net worth (asset, liabilities) → Stocks
- Flow of funds: sources and uses of funds \rightarrow Flows
- Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

National Accounts

- Economic activity is captured in monetary terms in two primary accounts
- ▶ Balance sheets: Net worth (asset, liabilities) → Stocks
- Flow of funds: sources and uses of funds \rightarrow Flows
- Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

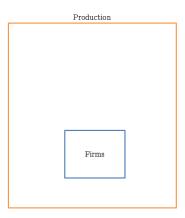
National Accounts

- Economic activity is captured in monetary terms in two primary accounts
- ▶ Balance sheets: Net worth (asset, liabilities) → Stocks
- Flow of funds: sources and uses of funds \rightarrow Flows
- Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Policy simulations

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

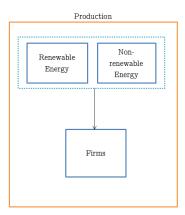

National Accounts

- Economic activity is captured in monetary terms in two primary accounts
- ▶ Balance sheets: Net worth (asset, liabilities) → Stocks
- Flow of funds: sources and uses of funds \rightarrow Flows
- Combined in the Integrated Economics and Financial Accounts (ECB quarterly reports)

Model ●0000000000000 Policy simulations

Conclusions 00000

Modeling Framework

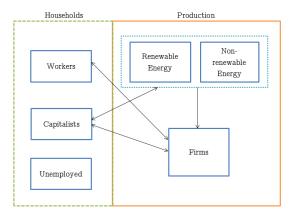


▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Model ○●○○○○○○○○○ Policy simulations

Conclusions 00000

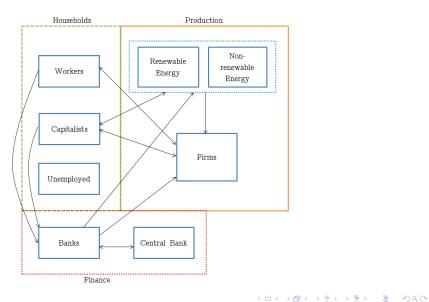
Modeling Framework



<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

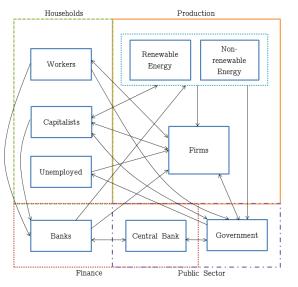
Model 00●000000000 Policy simulations

Conclusions 00000


Modeling Framework

Model 000€00000000 Policy simulations

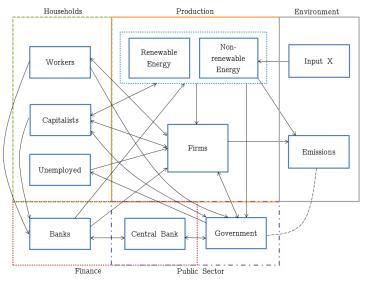
Conclusions 00000


Modeling Framework

Model 0000●0000000 Policy simulations

Conclusions 00000

Modeling Framework



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Model 00000●000000 Policy simulations

Conclusions

Modeling Framework

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Model 000000●00000 Policy simulations

Conclusions 00000

Balance Sheet

	H ous eholds			Production			Financial		Govt.	Σ
	Unemp.	Workers	Capitalists	Firms	Energy - X	Energy - R	Banks	Central Bank	GOVE.	2
Capital stock				+K	$+K^{X}$	$+K^R$				+K
Inventories				+IN	$+IN^{X}$					+INV
Cash		$+M^{h}$	$+M^{k}$					+M		0
Bank Deposits		$+D^{h}$	$+D^{k}$				-D ^b			0
Advances							-A ^b	-A		0
Bills							$+B^{b}$	$+B^{CB}$	-B	0
Loans				$-L^{f}$	$-L^{X}$	$-L^R$	+L			0
Σ	0	$+V^{h}$	$+V^{k}$	$+V^{f}$	$+V^{X}$	$+V^R$	0	0	$-V^{G}$	+NV

Model 0000000●0000 Policy simulations

Conclusions 00000

Transition Matrix

	Households			Pro ductio n			Financ	Govt.		
	Unemp.	Workers	Capit alist s	Firms	Energy - X	Energy - R	Commercial Banks	Central Bank	Govt.	Σ
Consumption	-C"	$-C^{h}$	- C k	+S					- G	0
Energy				-EB	$+E^{X}$	$+E^{R}$				0
Investment				+1	$+l^{x}$	$+l^R$				0
Δ Inventories				$+\Delta IN$	$+\Delta IN^{X}$					0
Wages		+WB		-WB						0
Unemp. Benefits	+UB								-UB	0
Bank profits			$+\Pi^{b}$				- Π ^b			0
Firm profits			$+\Pi'$	$-\Pi^{f}$						0
Energy profits			+Π [£]		$-\Pi^X$	$-\Pi^R$				0
CB profits								-Π ^{CB}	$+\Pi^{CB}$	0
Taxes		$-T^{h}$	$-T^{k}$	- T f	$-T^{X}$	$-T^R$			+T	0
i Advances							$-r_aA_{t-1}$	$+r_aA_{t-1}$		0
i Deposits		$+r_d D_{t-1}^h$	$+r_{d}D_{t-1}^{k}$				$-r_d D_{t-1}$			0
i Bills							$+r_{b}B_{t-1}^{b}$	$+r_b B_{t-1}^{CB}$	$-r_bB_{t-1}$	0
i Loans				$-r_l L_{t-1}^f$	$-r_l L_{t-1}^X$	$-r_l L_{t-1}^R$	$+r_{l}L_{t-1}$			0
∆Advances							$+\Delta A$	$-\Delta A$		0
∆Cash		$-\Delta C^{h}$	$-\Delta C^k$					$+\Delta C$		0
∆Deposits		$-\Delta D^{h}$	$-\Delta D^{k}$				$+\Delta D$			0
∆Bills							$+\Delta B^{b}$	$+\Delta B^{CB}$	$-\Delta B$	0
ΔLoans				$+\Delta L^{f}$	$+\Delta L^X$	$+\Delta L^R$	$-\Delta L$			0
Σ	0	0	0	0	0	0	0	0	0	0

Model 00000000●000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Key model assumptions

Agent's decisions are adaptive, based on past variables

- Decisions are made on <u>real variables</u>, accounts maintained in nominal variables
- Agents have a liquidity preference
 - Households: deposits
 - Firms: inventories
- Production requires three <u>complimentary inputs</u>: Labor, Capital, Energy
- Prices are set by producers as markup over costs
- Investment decisions are determined by capacity utilization rate

Model 00000000●000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Agent's decisions are adaptive, based on past variables
- Decisions are made on <u>real variables</u>, accounts maintained in nominal variables
- Agents have a liquidity preference
 - Households: deposits
 - Firms: inventories
- Production requires three <u>complimentary inputs</u>: Labor, Capital, Energy
- Prices are set by producers as markup over costs
- Investment decisions are determined by capacity utilization rate

Model 00000000●000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Agent's decisions are adaptive, based on past variables
- Decisions are made on <u>real variables</u>, accounts maintained in nominal variables
- Agents have a liquidity preference
 - Households: deposits
 - Firms: inventories
- Production requires three <u>complimentary inputs</u>: Labor, Capital, Energy
- Prices are set by producers as markup over costs
- Investment decisions are determined by capacity utilization rate

Model 00000000●000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Agent's decisions are adaptive, based on past variables
- Decisions are made on <u>real variables</u>, accounts maintained in nominal variables
- Agents have a liquidity preference
 - Households: deposits
 - Firms: inventories
- Production requires three <u>complimentary inputs</u>: Labor, Capital, Energy
- Prices are set by producers as markup over costs
- Investment decisions are determined by capacity utilization rate

Model 00000000●000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Agent's decisions are adaptive, based on past variables
- Decisions are made on <u>real variables</u>, accounts maintained in nominal variables
- Agents have a liquidity preference
 - Households: deposits
 - Firms: inventories
- Production requires three <u>complimentary inputs</u>: Labor, Capital, Energy
- Prices are set by producers as <u>markup over costs</u>
- Investment decisions are determined by capacity utilization rate

Model 00000000●000 Policy simulations

Conclusions 00000

- Agent's decisions are adaptive, based on past variables
- Decisions are made on <u>real variables</u>, accounts maintained in nominal variables
- Agents have a liquidity preference
 - Households: deposits
 - Firms: inventories
- Production requires three <u>complimentary inputs</u>: Labor, Capital, Energy
- Prices are set by producers as <u>markup over costs</u>
- Investment decisions are determined by <u>capacity utilization rate</u>

Model ○○○○○○○○●○○ Policy simulations

Conclusions

Firms - Production

- Output (Y_t) = Sales (S_t) + change in inventories (ΔIN_t)
 - Sales $(S_t) = HH$ demand $(C_t) + Government$ demand (G_t)
 - Inventories (IN_t) = unsold stock of produced goods

Production process requires three complimentary inputs

- Capital: $K_t = Y_t / \xi_{YK}$
- Labor: $N_t = Y_t / \xi_{YN}$
- Energy: $E_t = K_t / \xi_{KE}$
- Prices = markup over unit costs times tax

 $\triangleright p_t = UC_t(1+\theta)(+\tau)$

Model ○○○○○○○○●○○ Policy simulations

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Firms - Production

- Output (Y_t) = Sales (S_t) + change in inventories (ΔIN_t)
 - Sales $(S_t) = HH$ demand $(C_t) + Government$ demand (G_t)
 - Inventories (IN_t) = unsold stock of produced goods

Production process requires three complimentary inputs

- Capital: $K_t = Y_t / \xi_{YK}$
- Labor: $N_t = Y_t / \xi_{YN}$
- Energy: $E_t = K_t / \xi_{KE}$
- Prices = markup over unit costs times tax

$$p_t = UC_t(1+\theta)(+\tau)$$

Model 000000000000000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Firms - Investment

Investment = Inventories growth + capital stock growth

Desired investment in inventories

- Fraction of past sales as inventories
- Investment = target stock less existing stock

Desired investment in capital stock

- Capacity utilization ratio
- Investment = depreciation + target capital stock

Model 00000000000000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Firms - Investment

- Investment = Inventories growth + capital stock growth
- Desired investment in inventories
 - Fraction of past sales as inventories
 - Investment = target stock less existing stock

Desired investment in capital stock

- Capacity utilization ratio
- Investment = depreciation + target capital stock

Model 00000000000000 Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Firms - Investment

- Investment = Inventories growth + capital stock growth
- Desired investment in inventories
 - Fraction of past sales as inventories
 - Investment = target stock less existing stock
- Desired investment in capital stock
 - Capacity utilization ratio
 - Investment = depreciation + target capital stock

Model ○○○○○○○○○○ Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Energy and Emissions

- Energy is supplied by two energy producers
 - \blacktriangleright a high-emissions, non-renewable input X
 - \blacktriangleright a 0-emissions, renewable input R
 - Share of clean energy is exogenously determined (policy variable)
- Energy production = energy demand by firms

• price of energy
$$= p_t^E = UC_t^E(1+\theta)(1+\tau)X_t$$

- X_t is an exogenous extraction cost
- \blacktriangleright Firms and non-renewable energy production \rightarrow results in emissions

•
$$GHG_t = GHG_{t-1}(1-\Phi) + (y_t + y_t^X)/\xi_{GE}$$

Model ○○○○○○○○○○ Policy simulations

Conclusions 00000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Energy and Emissions

- Energy is supplied by two energy producers
 - ► a high-emissions, non-renewable input X
 - a 0-emissions, renewable input R
 - Share of clean energy is exogenously determined (policy variable)
- Energy production = energy demand by firms

• price of energy =
$$p_t^E = UC_t^E(1+\theta)(1+\tau).X_t$$

- X_t is an exogenous extraction cost
- \blacktriangleright Firms and non-renewable energy production \rightarrow results in emissions
 - $GHG_t = GHG_{t-1}(1-\Phi) + (y_t + y_t^X)/\xi_{GE}$

Model ○○○○○○○○○○ Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Energy and Emissions

- Energy is supplied by two energy producers
 - ► a high-emissions, non-renewable input X
 - a 0-emissions, renewable input R
 - Share of clean energy is exogenously determined (policy variable)
- Energy production = energy demand by firms

• price of energy =
$$p_t^E = UC_t^E(1+\theta)(1+\tau).X_t$$

- X_t is an exogenous extraction cost
- \blacktriangleright Firms and non-renewable energy production \rightarrow results in emissions

•
$$GHG_t = GHG_{t-1}(1 - \Phi) + (y_t + y_t^X)/\xi_{GE}$$

Policy simulations

Conclusions 00000

Two experiments

Experiment 1: Reduction in consumption expenditure

Experiment 2: Investment in capital and energy productivity

Policy simulations

Conclusions 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Two experiments

- Experiment 1: Reduction in consumption expenditure
- Experiment 2: Investment in capital and energy productivity

Model 000000000000 Policy simulations

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Experiment 1 - Reduction in Consumption

Slow growth hypothesis:

- ▶ Consumption↓ \rightarrow Demand \rightarrow Production↓
- ▶ \rightarrow Wages↓ \rightarrow Production↓ \rightarrow Emissions↓

But what about secondary effects of this policy?

- Impact on consumption distribution?
- Impact on unemployment?
- Impact on government spending?
- Test the above questions with a 10% reduction in consumption expenditure

Model 000000000000 Policy simulations

Conclusions

Experiment 1 - Reduction in Consumption

- Slow growth hypothesis:
 - ▶ Consumption↓ \rightarrow Demand \rightarrow Production↓
 - ▶ \rightarrow Wages↓ \rightarrow Production↓ \rightarrow Emissions↓
- But what about secondary effects of this policy?
 - Impact on consumption distribution?
 - Impact on unemployment?
 - Impact on government spending?
- Test the above questions with a 10% reduction in consumption expenditure

Model 000000000000 Policy simulations

Conclusions

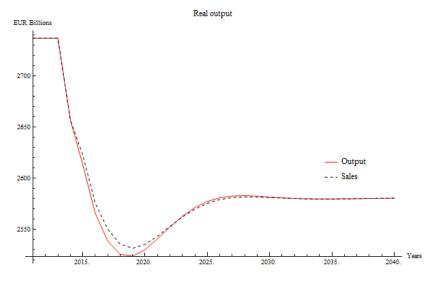
ション ふゆ く 山 マ チャット しょうくしゃ

Experiment 1 - Reduction in Consumption

- Slow growth hypothesis:
 - ▶ Consumption↓ \rightarrow Demand \rightarrow Production↓
 - ▶ \rightarrow Wages↓ \rightarrow Production↓ \rightarrow Emissions↓
- But what about secondary effects of this policy?
 - Impact on consumption distribution?
 - Impact on unemployment?
 - Impact on government spending?
- Test the above questions with a 10% reduction in consumption expenditure

Policy simulations

Conclusions 00000

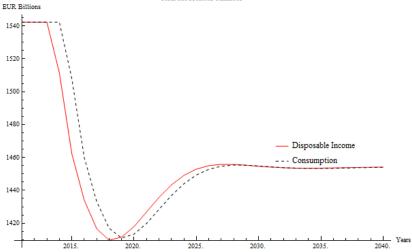

Key parameters

Parameter	Value	Description
N ^k	5%	Capitalist population
ω	1	Unit wage rate
κ	1	Labor productivity per unit of labor
α_1	0.8	MPC income
α_2	0.2	MPC wealth
δ	0.1	Depreciation rate
au	0.2	Tax rate
heta	0.1	Mark-up on costs
ϵ	0.5	Minimum consumption
Φ	0.01	GHG decay
ϕ	0.1	Share of renewable resource

Policy simulations

Conclusions 00000

Experiment 1 - Output

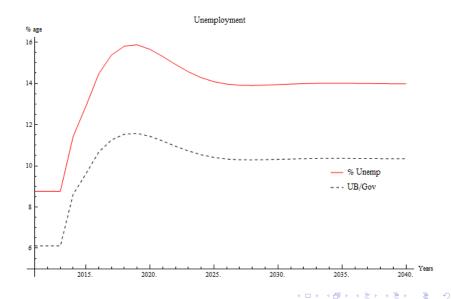


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Policy simulations

Conclusions

Experiment 1 - Income

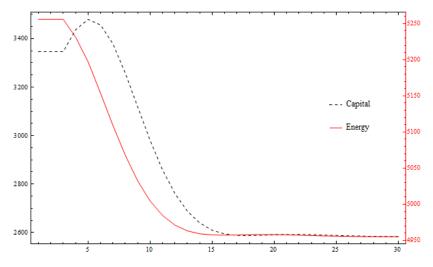

Real Household balances

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Model 000000000000000 Policy simulations

Conclusions

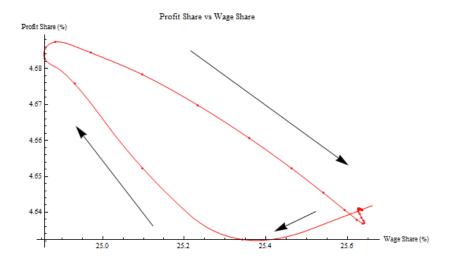
Experiment 1 - Unemployment



Model 000000000000000 Policy simulations

Conclusions

Experiment 1 - Capital and Energy


Capital Stock and Energy Bill (Nominal: EUR Billion)

Policy simulations

Conclusions 00000

Experiment 1 - Cyclical adjustment

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Policy simulations

Conclusions 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Experiment 2 - Innovation

- Generic production function of firms:
 - Output: $Y = f(K^f, L, E)$,
 - Y =output, $K^f =$ firm capital, L =labor, E =energy
- Generic production function of energy producers:

$$\blacktriangleright E = f(K^E, X)$$

• $K^E =$ Energy capital, X =non-renewable input

Policy simulations

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Experiment 2 - Innovation

- Generic production function of firms:
 - Output: $Y = f(K^f, L, E)$,
 - Y =output, $K^f =$ firm capital, L =labor, E =energy
- Generic production function of energy producers:

$$\bullet \ E = f(K^E, X)$$

• $K^E =$ Energy capital, X = non-renewable input

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Experiment 2 - Innovation

Two innovation parameters

- Capital per unit of output: $K = Y / \xi_{YK}$
- Energy per unit of capital: $E = K / \xi_{KE}$

• ξ is a technology parameter

- Increase in values of ξ implies technological innovation (efficiency)
- Lower input requirement

Policy simulations

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Experiment 2 - Innovation

- Two innovation parameters
 - Capital per unit of output: $K = Y / \xi_{YK}$
 - Energy per unit of capital: $E = K / \xi_{KE}$
- ξ is a technology parameter
 - Increase in values of ξ implies technological innovation (efficiency)
 - Lower input requirement

Policy simulations

Conclusions

Experiment 2 - Innovation

We can derive the following identity

$$E \equiv \frac{Y}{\xi_{YK}\xi_{KE}}$$

► Scenario 1

- Assuming $\xi_{YK} = \xi_{KE} = 1$ and there is no change ($\Delta \xi = 0$)
- if $Y \downarrow \rightarrow K \downarrow \rightarrow E \downarrow$ (low growth scenario)

► Scenario 2

- \blacktriangleright If innovation is allowed ($\Delta \xi > 0$) and output goes up $\hat{Y} > 0$
- ▶ then for the energy to go down (Ê < 0) the following condition must hold</p>

$$\hat{\xi}_{YK} + \hat{\xi}_{KE} > \hat{Y}$$

- the two components collectively must show a higher growth than output
- ► Outcomes might vary depending which component is growing

Policy simulations

Conclusions

Experiment 2 - Innovation

We can derive the following identity

$$E \equiv \frac{Y}{\xi_{YK}\xi_{KE}}$$

Scenario 1

- Assuming $\xi_{YK} = \xi_{KE} = 1$ and there is no change ($\Delta \xi = 0$)
- if $Y \downarrow \rightarrow K \downarrow \rightarrow E \downarrow$ (low growth scenario)

► Scenario 2

- \blacktriangleright If innovation is allowed ($\Delta \xi > 0$) and output goes up $\hat{Y} > 0$
- ▶ then for the energy to go down (Ê < 0) the following condition must hold</p>

$$\hat{\xi}_{YK} + \hat{\xi}_{KE} > \hat{Y}$$

- the two components collectively must show a higher growth than output
- ► Outcomes might vary depending which component is growing

Policy simulations

Conclusions

Experiment 2 - Innovation

We can derive the following identity

$$E \equiv \frac{Y}{\xi_{YK}\xi_{KE}}$$

Scenario 1

- Assuming $\xi_{YK} = \xi_{KE} = 1$ and there is no change ($\Delta \xi = 0$)
- if $Y \downarrow \rightarrow K \downarrow \rightarrow E \downarrow$ (low growth scenario)

Scenario 2

- If innovation is allowed ($\Delta \xi > 0$) and output goes up $\hat{Y} > 0$
- ▶ then for the energy to go down (Ê < 0) the following condition must hold</p>

$$\hat{\xi}_{YK} + \hat{\xi}_{KE} > \hat{Y}$$

- the two components collectively must show a higher growth than output
- Outcomes might vary depending which component is growing

Model 00000000000

Introduction

Policy simulations

Conclusions

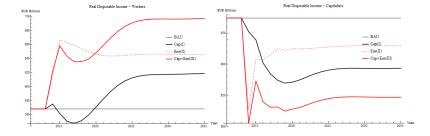

Experiment 2 - Three innovation scenarios

	Scenario	ξγκ	ξκε
Business-as-usual	BAU	1	1
Increase in capital efficiency only		1.2	1
Increase in energy efficiency only	II	1	1.2
Increase in capital and energy efficiency		1.2	1.2

Model 000000000000000 Policy simulations

Conclusions 00000

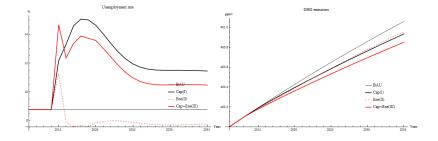
Experiment 2 - Output



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Policy simulations

Conclusions 00000


Experiment 2 - Income

Policy simulations

Conclusions

Experiment 2 - Unemployment and emissions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Policy simulations

Conclusions •0000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conclusions

- Experiment 1 Reduction in consumption expenditure
 - Double burden on the government: high unemployment transfers, lower tax revenues
- Experiment 2 Innovation in capital and energy productivity
 - Little change on aggregate demand, reduction of inequality by redistributing from capitalists to workers

Policy simulations

Conclusions •0000

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conclusions

- Experiment 1 Reduction in consumption expenditure
 - Double burden on the government: high unemployment transfers, lower tax revenues
- Experiment 2 Innovation in capital and energy productivity
 - Little change on aggregate demand, reduction of inequality by redistributing from capitalists to workers

Policy simulations

Conclusions 00000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Further Possible Experiments

- Endogenous tax
- Endogenous depreciation rate
- Endogenous labor productivity
- endogenous non-renewable input X extraction costs
- Higher share of renewable energy

Policy simulations

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Future extensions

- HH investment in financial and physical assets
- Distinction between firm owning capitalists and bank owning capitalists
- Profit, capital gain taxes
- Employment in multiple sectors
- Endogenous technological change
- Endogenous energy allocation
- Output and population growth
- Model calibration: (Eurostat data for the EU)

Policy simulations

Conclusions 000●0

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- The model factors in all major sectors in an economy
- Analytical and tractable
- Can be increased in complexity
- ► Allows testing various policy scenarios → establish counter-factuals
- Can be adapted for country/world level analysis

Policy simulations

Conclusions 000●0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The model factors in all major sectors in an economy
- Analytical and tractable
- Can be increased in complexity
- ► Allows testing various policy scenarios → establish counter-factuals
- Can be adapted for country/world level analysis

Policy simulations

Conclusions 000●0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The model factors in all major sectors in an economy
- Analytical and tractable
- Can be increased in complexity
- ► Allows testing various policy scenarios → establish counter-factuals
- Can be adapted for country/world level analysis

Policy simulations

Conclusions 000●0

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- The model factors in all major sectors in an economy
- Analytical and tractable
- Can be increased in complexity
- ► Allows testing various policy scenarios → establish counter-factuals
- Can be adapted for country/world level analysis

Policy simulations

Conclusions 000●0

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- The model factors in all major sectors in an economy
- Analytical and tractable
- Can be increased in complexity
- ► Allows testing various policy scenarios → establish counter-factuals
- Can be adapted for country/world level analysis

Policy simulations

Conclusions 0000●

Thank you!

References:

- Fontana, G., and M. Sawyer (2013): Post-Keynesian and Kaleckian thoughts on ecological macroeconomics, European Journal of Economics and Economic Policies: Intervention, 10(2).
- Godley, W., and M. Lavoie (2007): Monetary Economics: An Integrated Approach to Credit, Money, Income, Production and Wealth. Palgrave Macmillan, New York.
- Jackson, T. (2009): Prosperity without Growth: Economics for Finite Planet. Routledge.
- Pindyck, R. S. (2013): Climate Change Policy: What Do the Models Tell Us?, Journal of Economic Literature, 51(3), 860-872.
- Rezai, A., Taylor, L. and Mechler, R (2013). Ecological macroeconomics: An application to climate change Ecological Economics, 85, 69-76.
- dos Santos, C. H., and Zezza, G. (2008): A Simplied, 'Benchmark', Stock-Flow Consistent Post-Keynesian Growth Model, Metroeconomica, 59(3), 441-478.
- Taylor, L. (2004): Reconstructing Macroeconomics: Structuralist Proposals and Critiques of the Mainstream. Harvard University Press.
- Taylor, L., and D. Foley (2014): Greenhouse Gasses and Cyclical Growth, INET Working Paper 38.